Kesi Kurnia, Elena Efimova, Ville Santala, Suvi Santala
{"title":"利用代谢工程改造贝氏不动杆菌 ADP1 以生产柚皮苷","authors":"Kesi Kurnia, Elena Efimova, Ville Santala, Suvi Santala","doi":"10.1016/j.mec.2024.e00249","DOIUrl":null,"url":null,"abstract":"<div><div>Naringenin, a flavanone and a precursor for a variety of flavonoids, has potential applications in the health and pharmaceutical sectors. The biological production of naringenin using genetically engineered microbes is considered as a promising strategy. The naringenin synthesis pathway involving chalcone synthase (CHS) and chalcone isomerase (CHI) relies on the efficient supply of key substrates, malonyl-CoA and <em>p</em>-coumaroyl-CoA. In this research, we utilized a soil bacterium, <em>Acinetobacter baylyi</em> ADP1, which exhibits several characteristics that make it a suitable candidate for naringenin biosynthesis; the strain naturally tolerates and can uptake and metabolize <em>p</em>-coumaric acid, a primary compound in alkaline-pretreated lignin and a precursor for naringenin production. <em>A. baylyi</em> ADP1 also produces intracellular lipids, such as wax esters, thereby being able to provide malonyl-CoA for naringenin biosynthesis. Moreover, the genomic engineering of this strain is notably straightforward. In the course of the construction of a naringenin-producing strain, the <em>p</em>-coumarate catabolism was eliminated by a single gene knockout (Δ<em>hcaA</em>) and various combinations of plant-derived CHS and CHI were evaluated. The best performance was obtained by a novel combination of genes encoding for a CHS from <em>Hypericum androsaemum</em> and a CHI from <em>Medicago sativa,</em> that enabled the production of 17.9 mg/L naringenin in batch cultivations from <em>p</em>-coumarate. Furthermore, the implementation of a fed-batch system led to a 3.7-fold increase (66.4 mg/L) in naringenin production. These findings underscore the potential of <em>A. baylyi</em> ADP1 as a host for naringenin biosynthesis as well as advancement of lignin-based bioproduction.</div></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":"19 ","pages":"Article e00249"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic engineering of Acinetobacter baylyi ADP1 for naringenin production\",\"authors\":\"Kesi Kurnia, Elena Efimova, Ville Santala, Suvi Santala\",\"doi\":\"10.1016/j.mec.2024.e00249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Naringenin, a flavanone and a precursor for a variety of flavonoids, has potential applications in the health and pharmaceutical sectors. The biological production of naringenin using genetically engineered microbes is considered as a promising strategy. The naringenin synthesis pathway involving chalcone synthase (CHS) and chalcone isomerase (CHI) relies on the efficient supply of key substrates, malonyl-CoA and <em>p</em>-coumaroyl-CoA. In this research, we utilized a soil bacterium, <em>Acinetobacter baylyi</em> ADP1, which exhibits several characteristics that make it a suitable candidate for naringenin biosynthesis; the strain naturally tolerates and can uptake and metabolize <em>p</em>-coumaric acid, a primary compound in alkaline-pretreated lignin and a precursor for naringenin production. <em>A. baylyi</em> ADP1 also produces intracellular lipids, such as wax esters, thereby being able to provide malonyl-CoA for naringenin biosynthesis. Moreover, the genomic engineering of this strain is notably straightforward. In the course of the construction of a naringenin-producing strain, the <em>p</em>-coumarate catabolism was eliminated by a single gene knockout (Δ<em>hcaA</em>) and various combinations of plant-derived CHS and CHI were evaluated. The best performance was obtained by a novel combination of genes encoding for a CHS from <em>Hypericum androsaemum</em> and a CHI from <em>Medicago sativa,</em> that enabled the production of 17.9 mg/L naringenin in batch cultivations from <em>p</em>-coumarate. Furthermore, the implementation of a fed-batch system led to a 3.7-fold increase (66.4 mg/L) in naringenin production. These findings underscore the potential of <em>A. baylyi</em> ADP1 as a host for naringenin biosynthesis as well as advancement of lignin-based bioproduction.</div></div>\",\"PeriodicalId\":18695,\"journal\":{\"name\":\"Metabolic Engineering Communications\",\"volume\":\"19 \",\"pages\":\"Article e00249\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic Engineering Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221403012400018X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221403012400018X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Metabolic engineering of Acinetobacter baylyi ADP1 for naringenin production
Naringenin, a flavanone and a precursor for a variety of flavonoids, has potential applications in the health and pharmaceutical sectors. The biological production of naringenin using genetically engineered microbes is considered as a promising strategy. The naringenin synthesis pathway involving chalcone synthase (CHS) and chalcone isomerase (CHI) relies on the efficient supply of key substrates, malonyl-CoA and p-coumaroyl-CoA. In this research, we utilized a soil bacterium, Acinetobacter baylyi ADP1, which exhibits several characteristics that make it a suitable candidate for naringenin biosynthesis; the strain naturally tolerates and can uptake and metabolize p-coumaric acid, a primary compound in alkaline-pretreated lignin and a precursor for naringenin production. A. baylyi ADP1 also produces intracellular lipids, such as wax esters, thereby being able to provide malonyl-CoA for naringenin biosynthesis. Moreover, the genomic engineering of this strain is notably straightforward. In the course of the construction of a naringenin-producing strain, the p-coumarate catabolism was eliminated by a single gene knockout (ΔhcaA) and various combinations of plant-derived CHS and CHI were evaluated. The best performance was obtained by a novel combination of genes encoding for a CHS from Hypericum androsaemum and a CHI from Medicago sativa, that enabled the production of 17.9 mg/L naringenin in batch cultivations from p-coumarate. Furthermore, the implementation of a fed-batch system led to a 3.7-fold increase (66.4 mg/L) in naringenin production. These findings underscore the potential of A. baylyi ADP1 as a host for naringenin biosynthesis as well as advancement of lignin-based bioproduction.
期刊介绍:
Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.