商 quiver 减法

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Amihay Hanany, Rudolph Kalveks, Guhesh Kumaran
{"title":"商 quiver 减法","authors":"Amihay Hanany,&nbsp;Rudolph Kalveks,&nbsp;Guhesh Kumaran","doi":"10.1016/j.nuclphysb.2024.116731","DOIUrl":null,"url":null,"abstract":"<div><div>We develop the diagrammatic technique of quiver subtraction to facilitate the identification and evaluation of the <span><math><mrow><mi>SU</mi></mrow><mo>(</mo><mi>n</mi><mo>)</mo></math></span> hyper-Kähler quotient (HKQ) of the Coulomb branch of a 3<em>d</em> <span><math><mi>N</mi><mo>=</mo><mn>4</mn></math></span> unitary quiver theory. The target quivers are drawn from a wide range of theories, typically classified as “good” or “ugly”, which satisfy identified selection criteria. Our subtraction procedure uses quotient quivers that are “bad”, differing thereby from quiver subtractions based on Kraft-Procesi transitions. The simple diagrammatic procedure identifies one or more resultant quivers, the union of whose Coulomb branches corresponds to the desired HKQ. Examples include quivers whose Coulomb branches are moduli spaces of free fields, closures of nilpotent orbits of classical and exceptional type, and slices in the affine Grassmanian. We calculate the Hilbert Series and Highest Weight Generating functions for HKQ examples of low rank. For certain families of quivers, we are able to conjecture HWGs for arbitrary rank. We examine the commutation relations between quotient quiver subtraction and other diagrammatic techniques, such as Kraft-Procesi transitions, quiver folding, and discrete quotients.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1009 ","pages":"Article 116731"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quotient quiver subtraction\",\"authors\":\"Amihay Hanany,&nbsp;Rudolph Kalveks,&nbsp;Guhesh Kumaran\",\"doi\":\"10.1016/j.nuclphysb.2024.116731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop the diagrammatic technique of quiver subtraction to facilitate the identification and evaluation of the <span><math><mrow><mi>SU</mi></mrow><mo>(</mo><mi>n</mi><mo>)</mo></math></span> hyper-Kähler quotient (HKQ) of the Coulomb branch of a 3<em>d</em> <span><math><mi>N</mi><mo>=</mo><mn>4</mn></math></span> unitary quiver theory. The target quivers are drawn from a wide range of theories, typically classified as “good” or “ugly”, which satisfy identified selection criteria. Our subtraction procedure uses quotient quivers that are “bad”, differing thereby from quiver subtractions based on Kraft-Procesi transitions. The simple diagrammatic procedure identifies one or more resultant quivers, the union of whose Coulomb branches corresponds to the desired HKQ. Examples include quivers whose Coulomb branches are moduli spaces of free fields, closures of nilpotent orbits of classical and exceptional type, and slices in the affine Grassmanian. We calculate the Hilbert Series and Highest Weight Generating functions for HKQ examples of low rank. For certain families of quivers, we are able to conjecture HWGs for arbitrary rank. We examine the commutation relations between quotient quiver subtraction and other diagrammatic techniques, such as Kraft-Procesi transitions, quiver folding, and discrete quotients.</div></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1009 \",\"pages\":\"Article 116731\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321324002979\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324002979","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了 "颤子减法 "图解技术,以方便识别和评估 3d N=4 单元颤子理论库仑支的 SU(n) 超凯勒商(HKQ)。目标四元数来自广泛的理论,通常分为 "好的 "和 "丑的",它们都满足已确定的选择标准。我们的减法过程使用的是 "坏 "的引子,因此与基于卡夫-普罗切斯转换的引子减法不同。这个简单的图解程序可以识别出一个或多个结果四元组,其库仑分支的联合与所需的 HKQ 相对应。例子包括库仑分支为自由场模空间的四元组、经典和特殊类型的零势轨道闭包,以及仿射格拉斯曼中的切片。我们计算了低秩 HKQ 例子的希尔伯特数列和最高权重生成函数。对于某些四元组族,我们能够猜想任意秩的 HWG。我们研究了商quiver减法与其他图解技术(如卡夫-普罗切斯转换、quiver折叠和离散商)之间的换向关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quotient quiver subtraction
We develop the diagrammatic technique of quiver subtraction to facilitate the identification and evaluation of the SU(n) hyper-Kähler quotient (HKQ) of the Coulomb branch of a 3d N=4 unitary quiver theory. The target quivers are drawn from a wide range of theories, typically classified as “good” or “ugly”, which satisfy identified selection criteria. Our subtraction procedure uses quotient quivers that are “bad”, differing thereby from quiver subtractions based on Kraft-Procesi transitions. The simple diagrammatic procedure identifies one or more resultant quivers, the union of whose Coulomb branches corresponds to the desired HKQ. Examples include quivers whose Coulomb branches are moduli spaces of free fields, closures of nilpotent orbits of classical and exceptional type, and slices in the affine Grassmanian. We calculate the Hilbert Series and Highest Weight Generating functions for HKQ examples of low rank. For certain families of quivers, we are able to conjecture HWGs for arbitrary rank. We examine the commutation relations between quotient quiver subtraction and other diagrammatic techniques, such as Kraft-Procesi transitions, quiver folding, and discrete quotients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信