{"title":"利用荸荠废弃物生产生物氢并通过叠层微生物燃料电池提高发电量","authors":"Soumyajit Chandra , Soumya Pandit , Soma Deb , C. Mohan , Mithul Rajeev , Nishant Ranjan , Ashish Kumar , Pritam Kumar Dikshit","doi":"10.1016/j.bcab.2024.103425","DOIUrl":null,"url":null,"abstract":"<div><div>A novel two-stage approach combining dark fermentation with microbial fuel cell (MFC) technology is proposed which enable biohydrogen production and bioelectricity generation from residual substrate energy. In the present study, batch fermentation of water chestnut waste using <em>Enterobacter aerogenes</em> (MTCC 2822) resulted in the production of biohydrogen. In the batch process, the highest production was 3.2 L/L. Further, single-parameter optimization and multi-parameter optimization were conducted via Response Surface Methodology (RSM) using the Central Composite Design (CCD) model. The maximum biohydrogen reached 3.44 g/L with 55% COD removal. The biohydrogen yield was 7.163 g H<sub>2</sub>/kg COD<sub>reduced</sub> with a maximum production rate of 712 mL/L/h. Further, the waste fermentation medium or spent media was used as a substrate in a Microbial Fuel Cell (MFC) to produce power using <em>Pseudomonas aeruginosa</em> PA1_NCHU as inoculum. MFCs were operated with various concentrations of phosphate buffer in the anolyte. As the output is limited in a single MFC, MFCs were operated in parallel stacks to increase power output. A maximum of 28% increase in the power density was observed in stacked MFCs. The energy recovered from the dark fermentation process was around 10.39% and a single MFC was around 10.67%. Hence, this study highlights the innovative use of agricultural waste and the effective combination of dark fermentation with stacked MFC, presenting a sustainable method of maximizing biohydrogen production and bioelectricity from spent media. By leveraging stacked MFC configuration, the potential of higher power output is demonstrated, underscoring the significance of this integrated system for energy recovery.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilization of water chestnut waste for biohydrogen production and enhanced power generation by stacked microbial fuel cell\",\"authors\":\"Soumyajit Chandra , Soumya Pandit , Soma Deb , C. Mohan , Mithul Rajeev , Nishant Ranjan , Ashish Kumar , Pritam Kumar Dikshit\",\"doi\":\"10.1016/j.bcab.2024.103425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel two-stage approach combining dark fermentation with microbial fuel cell (MFC) technology is proposed which enable biohydrogen production and bioelectricity generation from residual substrate energy. In the present study, batch fermentation of water chestnut waste using <em>Enterobacter aerogenes</em> (MTCC 2822) resulted in the production of biohydrogen. In the batch process, the highest production was 3.2 L/L. Further, single-parameter optimization and multi-parameter optimization were conducted via Response Surface Methodology (RSM) using the Central Composite Design (CCD) model. The maximum biohydrogen reached 3.44 g/L with 55% COD removal. The biohydrogen yield was 7.163 g H<sub>2</sub>/kg COD<sub>reduced</sub> with a maximum production rate of 712 mL/L/h. Further, the waste fermentation medium or spent media was used as a substrate in a Microbial Fuel Cell (MFC) to produce power using <em>Pseudomonas aeruginosa</em> PA1_NCHU as inoculum. MFCs were operated with various concentrations of phosphate buffer in the anolyte. As the output is limited in a single MFC, MFCs were operated in parallel stacks to increase power output. A maximum of 28% increase in the power density was observed in stacked MFCs. The energy recovered from the dark fermentation process was around 10.39% and a single MFC was around 10.67%. Hence, this study highlights the innovative use of agricultural waste and the effective combination of dark fermentation with stacked MFC, presenting a sustainable method of maximizing biohydrogen production and bioelectricity from spent media. By leveraging stacked MFC configuration, the potential of higher power output is demonstrated, underscoring the significance of this integrated system for energy recovery.</div></div>\",\"PeriodicalId\":8774,\"journal\":{\"name\":\"Biocatalysis and agricultural biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocatalysis and agricultural biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878818124004092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818124004092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Utilization of water chestnut waste for biohydrogen production and enhanced power generation by stacked microbial fuel cell
A novel two-stage approach combining dark fermentation with microbial fuel cell (MFC) technology is proposed which enable biohydrogen production and bioelectricity generation from residual substrate energy. In the present study, batch fermentation of water chestnut waste using Enterobacter aerogenes (MTCC 2822) resulted in the production of biohydrogen. In the batch process, the highest production was 3.2 L/L. Further, single-parameter optimization and multi-parameter optimization were conducted via Response Surface Methodology (RSM) using the Central Composite Design (CCD) model. The maximum biohydrogen reached 3.44 g/L with 55% COD removal. The biohydrogen yield was 7.163 g H2/kg CODreduced with a maximum production rate of 712 mL/L/h. Further, the waste fermentation medium or spent media was used as a substrate in a Microbial Fuel Cell (MFC) to produce power using Pseudomonas aeruginosa PA1_NCHU as inoculum. MFCs were operated with various concentrations of phosphate buffer in the anolyte. As the output is limited in a single MFC, MFCs were operated in parallel stacks to increase power output. A maximum of 28% increase in the power density was observed in stacked MFCs. The energy recovered from the dark fermentation process was around 10.39% and a single MFC was around 10.67%. Hence, this study highlights the innovative use of agricultural waste and the effective combination of dark fermentation with stacked MFC, presenting a sustainable method of maximizing biohydrogen production and bioelectricity from spent media. By leveraging stacked MFC configuration, the potential of higher power output is demonstrated, underscoring the significance of this integrated system for energy recovery.
期刊介绍:
Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.