利用生成式 VAE,通过可控潜特征高效设计以属性为导向的复合材料铺层

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Huaixiang Sun , Xiaodong Wang , Jiaxue Li, Zengshan Li, Zhidong Guan
{"title":"利用生成式 VAE,通过可控潜特征高效设计以属性为导向的复合材料铺层","authors":"Huaixiang Sun ,&nbsp;Xiaodong Wang ,&nbsp;Jiaxue Li,&nbsp;Zengshan Li,&nbsp;Zhidong Guan","doi":"10.1016/j.compscitech.2024.110936","DOIUrl":null,"url":null,"abstract":"<div><div>Fiber-reinforced composites provide substantial tailoring potential, while the extensive parameters and complex coupling mechanisms pose formidable challenges to layup designs. This paper presents an efficient inverse design framework for composite layups utilizing a variational autoencoder (VAE), which is applicable to non-conventional laminates. By leveraging the VAE's exceptional feature extraction and generative capabilities, the decoder rapidly produces layups with desired properties through controllable feature vectors. Based on the stacking characteristics of layups, multi-scale one-dimensional convolutions precisely extract sequence features relevant to mechanical properties and specific manufacturing constraints. A customized loss function is formulated to constrain the latent features, while addressing the non-uniqueness problem for layups with certain mechanical properties. The developed property-oriented VAE can generate 100,000 layups in seconds, achieving an average success rate of 66.9 % under comprehensive in-plane and bending stiffness design, and remains effective for 100-ply thick laminate. For comparison, the VAE model outperforms the genetic algorithm and the logic-based method in reinforced panel designs, reducing the retrieval error by 46.4 % and 38.1 %, respectively. The proposed approach demonstrates flexible and efficient design advantages using generative machine learning models, and is easily extendable to other inverse design scenarios.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"259 ","pages":"Article 110936"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient property-oriented design of composite layups via controllable latent features using generative VAE\",\"authors\":\"Huaixiang Sun ,&nbsp;Xiaodong Wang ,&nbsp;Jiaxue Li,&nbsp;Zengshan Li,&nbsp;Zhidong Guan\",\"doi\":\"10.1016/j.compscitech.2024.110936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fiber-reinforced composites provide substantial tailoring potential, while the extensive parameters and complex coupling mechanisms pose formidable challenges to layup designs. This paper presents an efficient inverse design framework for composite layups utilizing a variational autoencoder (VAE), which is applicable to non-conventional laminates. By leveraging the VAE's exceptional feature extraction and generative capabilities, the decoder rapidly produces layups with desired properties through controllable feature vectors. Based on the stacking characteristics of layups, multi-scale one-dimensional convolutions precisely extract sequence features relevant to mechanical properties and specific manufacturing constraints. A customized loss function is formulated to constrain the latent features, while addressing the non-uniqueness problem for layups with certain mechanical properties. The developed property-oriented VAE can generate 100,000 layups in seconds, achieving an average success rate of 66.9 % under comprehensive in-plane and bending stiffness design, and remains effective for 100-ply thick laminate. For comparison, the VAE model outperforms the genetic algorithm and the logic-based method in reinforced panel designs, reducing the retrieval error by 46.4 % and 38.1 %, respectively. The proposed approach demonstrates flexible and efficient design advantages using generative machine learning models, and is easily extendable to other inverse design scenarios.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"259 \",\"pages\":\"Article 110936\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353824005062\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824005062","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

纤维增强复合材料具有巨大的定制潜力,但其广泛的参数和复杂的耦合机制给铺层设计带来了严峻的挑战。本文介绍了一种利用变异自动编码器(VAE)进行复合材料层叠的高效反设计框架,该框架适用于非常规层压板。利用 VAE 卓越的特征提取和生成能力,解码器可通过可控特征向量快速生成具有所需特性的层叠结构。根据层叠的堆叠特性,多尺度一维卷积可精确提取与机械特性和特定制造约束相关的序列特征。制定了一个定制的损失函数来约束潜在特征,同时解决了具有特定机械性能的叠层的非唯一性问题。所开发的面向特性的 VAE 可在数秒内生成 100,000 个层叠,在全面的面内和弯曲刚度设计下,平均成功率达到 66.9%,并且对 100 层厚的层压板仍然有效。相比之下,VAE 模型在增强板设计中的表现优于遗传算法和基于逻辑的方法,检索误差分别减少了 46.4% 和 38.1%。所提出的方法利用生成式机器学习模型展示了灵活高效的设计优势,并可轻松扩展到其他逆向设计场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient property-oriented design of composite layups via controllable latent features using generative VAE

Efficient property-oriented design of composite layups via controllable latent features using generative VAE
Fiber-reinforced composites provide substantial tailoring potential, while the extensive parameters and complex coupling mechanisms pose formidable challenges to layup designs. This paper presents an efficient inverse design framework for composite layups utilizing a variational autoencoder (VAE), which is applicable to non-conventional laminates. By leveraging the VAE's exceptional feature extraction and generative capabilities, the decoder rapidly produces layups with desired properties through controllable feature vectors. Based on the stacking characteristics of layups, multi-scale one-dimensional convolutions precisely extract sequence features relevant to mechanical properties and specific manufacturing constraints. A customized loss function is formulated to constrain the latent features, while addressing the non-uniqueness problem for layups with certain mechanical properties. The developed property-oriented VAE can generate 100,000 layups in seconds, achieving an average success rate of 66.9 % under comprehensive in-plane and bending stiffness design, and remains effective for 100-ply thick laminate. For comparison, the VAE model outperforms the genetic algorithm and the logic-based method in reinforced panel designs, reducing the retrieval error by 46.4 % and 38.1 %, respectively. The proposed approach demonstrates flexible and efficient design advantages using generative machine learning models, and is easily extendable to other inverse design scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信