IFNet:数据驱动的多传感器估计融合与传感器测量噪声中的未知相关性

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ming Wang, Haiqi Liu, Hanning Tang, Mei Zhang, Xiaojing Shen
{"title":"IFNet:数据驱动的多传感器估计融合与传感器测量噪声中的未知相关性","authors":"Ming Wang,&nbsp;Haiqi Liu,&nbsp;Hanning Tang,&nbsp;Mei Zhang,&nbsp;Xiaojing Shen","doi":"10.1016/j.inffus.2024.102750","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, multisensor fusion for state estimation has gained considerable attention. The effectiveness of the optimal fusion estimation method heavily relies on the correlation among sensor measurement noises. To enhance estimate fusion performance by mining unknown correlation in the data, this paper introduces a novel multisensor fusion approach using an information filtering neural network (IFNet) for discrete-time nonlinear state space models with cross-correlated measurement noises. The method presents three notable advantages: First, it offers a data-driven perspective to tackle uncertain correlation in multisensor estimate fusion while preserving the interpretability of the information filtering. Second, by harnessing the RNN’s capability to manage data streams, it can dynamically update the fusion weights between sensors to improve fusion accuracy. Third, this method has a lower complexity than the state-of-the-art KalmanNet measurement fusion method when dealing with the fusion problem involving a large number of sensors. Numerical simulations demonstrate that IFNet exhibits better fusion accuracy than traditional filtering methods and KalmanNet fusion filtering when correlation among measurement noises is unknown.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"115 ","pages":"Article 102750"},"PeriodicalIF":14.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IFNet: Data-driven multisensor estimate fusion with unknown correlation in sensor measurement noises\",\"authors\":\"Ming Wang,&nbsp;Haiqi Liu,&nbsp;Hanning Tang,&nbsp;Mei Zhang,&nbsp;Xiaojing Shen\",\"doi\":\"10.1016/j.inffus.2024.102750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, multisensor fusion for state estimation has gained considerable attention. The effectiveness of the optimal fusion estimation method heavily relies on the correlation among sensor measurement noises. To enhance estimate fusion performance by mining unknown correlation in the data, this paper introduces a novel multisensor fusion approach using an information filtering neural network (IFNet) for discrete-time nonlinear state space models with cross-correlated measurement noises. The method presents three notable advantages: First, it offers a data-driven perspective to tackle uncertain correlation in multisensor estimate fusion while preserving the interpretability of the information filtering. Second, by harnessing the RNN’s capability to manage data streams, it can dynamically update the fusion weights between sensors to improve fusion accuracy. Third, this method has a lower complexity than the state-of-the-art KalmanNet measurement fusion method when dealing with the fusion problem involving a large number of sensors. Numerical simulations demonstrate that IFNet exhibits better fusion accuracy than traditional filtering methods and KalmanNet fusion filtering when correlation among measurement noises is unknown.</div></div>\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"115 \",\"pages\":\"Article 102750\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566253524005281\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253524005281","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,用于状态估计的多传感器融合受到了广泛关注。最佳融合估计方法的有效性在很大程度上取决于传感器测量噪声之间的相关性。为了通过挖掘数据中未知的相关性来提高估计融合性能,本文针对具有交叉相关测量噪声的离散时间非线性状态空间模型,介绍了一种使用信息过滤神经网络(IFNet)的新型多传感器融合方法。该方法具有三个显著优势:首先,它提供了一个数据驱动的视角来解决多传感器估计融合中的不确定相关性问题,同时保留了信息过滤的可解释性。其次,通过利用 RNN 管理数据流的能力,它可以动态更新传感器之间的融合权重,从而提高融合精度。第三,在处理涉及大量传感器的融合问题时,该方法的复杂度低于最先进的卡尔曼网络测量融合方法。数值模拟证明,当测量噪声之间的相关性未知时,IFNet 比传统滤波方法和 KalmanNet 融合滤波方法表现出更高的融合精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IFNet: Data-driven multisensor estimate fusion with unknown correlation in sensor measurement noises
In recent years, multisensor fusion for state estimation has gained considerable attention. The effectiveness of the optimal fusion estimation method heavily relies on the correlation among sensor measurement noises. To enhance estimate fusion performance by mining unknown correlation in the data, this paper introduces a novel multisensor fusion approach using an information filtering neural network (IFNet) for discrete-time nonlinear state space models with cross-correlated measurement noises. The method presents three notable advantages: First, it offers a data-driven perspective to tackle uncertain correlation in multisensor estimate fusion while preserving the interpretability of the information filtering. Second, by harnessing the RNN’s capability to manage data streams, it can dynamically update the fusion weights between sensors to improve fusion accuracy. Third, this method has a lower complexity than the state-of-the-art KalmanNet measurement fusion method when dealing with the fusion problem involving a large number of sensors. Numerical simulations demonstrate that IFNet exhibits better fusion accuracy than traditional filtering methods and KalmanNet fusion filtering when correlation among measurement noises is unknown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信