具有非多项式局部守恒定律的有限差分方案

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Gianluca Frasca-Caccia
{"title":"具有非多项式局部守恒定律的有限差分方案","authors":"Gianluca Frasca-Caccia","doi":"10.1016/j.cam.2024.116330","DOIUrl":null,"url":null,"abstract":"<div><div>A new technique has been recently introduced to define finite difference schemes that preserve local conservation laws. So far, this approach has been applied to find parametric families of numerical methods with polynomial conservation laws. This paper extends the existing approach to preserve non polynomial conservation laws. Although the approach is general, the treatment of the nonlinear terms depends on the problem at hand. New parameter depending families of conservative schemes are here introduced for the sine–Gordon equation and a magma equation. Optimal methods in each family are identified by finding values of the parameters that minimize a defect-based approximation of the local error in the time discretization.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite difference schemes with non polynomial local conservation laws\",\"authors\":\"Gianluca Frasca-Caccia\",\"doi\":\"10.1016/j.cam.2024.116330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A new technique has been recently introduced to define finite difference schemes that preserve local conservation laws. So far, this approach has been applied to find parametric families of numerical methods with polynomial conservation laws. This paper extends the existing approach to preserve non polynomial conservation laws. Although the approach is general, the treatment of the nonlinear terms depends on the problem at hand. New parameter depending families of conservative schemes are here introduced for the sine–Gordon equation and a magma equation. Optimal methods in each family are identified by finding values of the parameters that minimize a defect-based approximation of the local error in the time discretization.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

最近引入了一种新技术来定义保持局部守恒定律的有限差分方案。迄今为止,这种方法一直用于寻找多项式守恒定律数值方法的参数族。本文扩展了现有方法,以保留非多项式守恒定律。虽然该方法是通用的,但对非线性项的处理取决于手头的问题。本文针对正弦-戈登方程和岩浆方程引入了新的参数依赖保守方案系列。通过寻找参数值,使时间离散化中基于缺陷的局部误差近似值最小化,从而确定每个系列中的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite difference schemes with non polynomial local conservation laws
A new technique has been recently introduced to define finite difference schemes that preserve local conservation laws. So far, this approach has been applied to find parametric families of numerical methods with polynomial conservation laws. This paper extends the existing approach to preserve non polynomial conservation laws. Although the approach is general, the treatment of the nonlinear terms depends on the problem at hand. New parameter depending families of conservative schemes are here introduced for the sine–Gordon equation and a magma equation. Optimal methods in each family are identified by finding values of the parameters that minimize a defect-based approximation of the local error in the time discretization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信