{"title":"具有 iid 条目的随机矩阵的运算符 ℓp → ℓq 准则","authors":"Rafał Latała, Marta Strzelecka","doi":"10.1016/j.jfa.2024.110720","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that for every <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>]</mo></math></span> and every random matrix <span><math><mi>X</mi><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>≤</mo><mi>m</mi><mo>,</mo><mi>j</mi><mo>≤</mo><mi>n</mi></mrow></msub></math></span> with iid centered entries satisfying the <em>α</em>-regularity assumption <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>‖</mo></mrow><mrow><mn>2</mn><mi>ρ</mi></mrow></msub><mo>≤</mo><mi>α</mi><msub><mrow><mo>‖</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>‖</mo></mrow><mrow><mi>ρ</mi></mrow></msub></math></span> for every <span><math><mi>ρ</mi><mo>≥</mo><mn>1</mn></math></span>, the expectation of the operator norm of <em>X</em> from <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> to <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span> is comparable, up to a constant depending only on <em>α</em>, to<span><span><span><math><msup><mrow><mi>m</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>q</mi></mrow></msup><munder><mi>sup</mi><mrow><mi>t</mi><mo>∈</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msubsup></mrow></munder><mo></mo><msub><mrow><mo>‖</mo><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><msub><mrow><mi>t</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>j</mi></mrow></msub><mo>‖</mo></mrow><mrow><mi>q</mi><mo>∧</mo><mi>Log</mi><mspace></mspace><mi>m</mi></mrow></msub><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></msup><munder><mi>sup</mi><mrow><mi>s</mi><mo>∈</mo><msubsup><mrow><mi>B</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow><mrow><mi>m</mi></mrow></msubsup></mrow></munder><mo></mo><msub><mrow><mo>‖</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><msub><mrow><mi>s</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi><mo>,</mo><mn>1</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>∧</mo><mi>Log</mi><mspace></mspace><mi>n</mi></mrow></msub><mo>.</mo></math></span></span></span> We give more explicit formulas, expressed as exact functions of <em>p</em>, <em>q</em>, <em>m</em>, and <em>n</em>, for the two-sided bounds of the operator norms in the case when the entries <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub></math></span> are: Gaussian, Weibullian, log-concave tailed, and log-convex tailed. In the range <span><math><mn>1</mn><mo>≤</mo><mi>q</mi><mo>≤</mo><mn>2</mn><mo>≤</mo><mi>p</mi></math></span> we provide two-sided bounds under the weaker regularity assumption <span><math><msup><mrow><mo>(</mo><mi>E</mi><msubsup><mrow><mi>X</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow><mrow><mn>4</mn></mrow></msubsup><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup><mo>≤</mo><mi>α</mi><msup><mrow><mo>(</mo><mi>E</mi><msubsup><mrow><mi>X</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operator ℓp → ℓq norms of random matrices with iid entries\",\"authors\":\"Rafał Latała, Marta Strzelecka\",\"doi\":\"10.1016/j.jfa.2024.110720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove that for every <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>]</mo></math></span> and every random matrix <span><math><mi>X</mi><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>≤</mo><mi>m</mi><mo>,</mo><mi>j</mi><mo>≤</mo><mi>n</mi></mrow></msub></math></span> with iid centered entries satisfying the <em>α</em>-regularity assumption <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>‖</mo></mrow><mrow><mn>2</mn><mi>ρ</mi></mrow></msub><mo>≤</mo><mi>α</mi><msub><mrow><mo>‖</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>‖</mo></mrow><mrow><mi>ρ</mi></mrow></msub></math></span> for every <span><math><mi>ρ</mi><mo>≥</mo><mn>1</mn></math></span>, the expectation of the operator norm of <em>X</em> from <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> to <span><math><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span> is comparable, up to a constant depending only on <em>α</em>, to<span><span><span><math><msup><mrow><mi>m</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>q</mi></mrow></msup><munder><mi>sup</mi><mrow><mi>t</mi><mo>∈</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msubsup></mrow></munder><mo></mo><msub><mrow><mo>‖</mo><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><msub><mrow><mi>t</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>j</mi></mrow></msub><mo>‖</mo></mrow><mrow><mi>q</mi><mo>∧</mo><mi>Log</mi><mspace></mspace><mi>m</mi></mrow></msub><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow></msup><munder><mi>sup</mi><mrow><mi>s</mi><mo>∈</mo><msubsup><mrow><mi>B</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msup></mrow><mrow><mi>m</mi></mrow></msubsup></mrow></munder><mo></mo><msub><mrow><mo>‖</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><msub><mrow><mi>s</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi><mo>,</mo><mn>1</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>∧</mo><mi>Log</mi><mspace></mspace><mi>n</mi></mrow></msub><mo>.</mo></math></span></span></span> We give more explicit formulas, expressed as exact functions of <em>p</em>, <em>q</em>, <em>m</em>, and <em>n</em>, for the two-sided bounds of the operator norms in the case when the entries <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub></math></span> are: Gaussian, Weibullian, log-concave tailed, and log-convex tailed. In the range <span><math><mn>1</mn><mo>≤</mo><mi>q</mi><mo>≤</mo><mn>2</mn><mo>≤</mo><mi>p</mi></math></span> we provide two-sided bounds under the weaker regularity assumption <span><math><msup><mrow><mo>(</mo><mi>E</mi><msubsup><mrow><mi>X</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow><mrow><mn>4</mn></mrow></msubsup><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup><mo>≤</mo><mi>α</mi><msup><mrow><mo>(</mo><mi>E</mi><msubsup><mrow><mi>X</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624004087\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004087","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Operator ℓp → ℓq norms of random matrices with iid entries
We prove that for every and every random matrix with iid centered entries satisfying the α-regularity assumption for every , the expectation of the operator norm of X from to is comparable, up to a constant depending only on α, to We give more explicit formulas, expressed as exact functions of p, q, m, and n, for the two-sided bounds of the operator norms in the case when the entries are: Gaussian, Weibullian, log-concave tailed, and log-convex tailed. In the range we provide two-sided bounds under the weaker regularity assumption .
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis