{"title":"关于复数上贝塞尔函数的汉克尔变换和高斯域上的明确谱公式","authors":"Zhi Qi","doi":"10.1016/j.jfa.2024.110723","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, on the complex field <span><math><mi>C</mi></math></span>, we prove two integral formulae for the Hankel–Mellin transform and the double Fourier–Mellin transform of Bessel functions, both resulting the hypergeometric function. As two applications, we use the former integral formula to make explicit the spectral formula of Bruggeman and Motohashi for the fourth moment of Dedekind zeta function over the Gaussian number field <span><math><mi>Q</mi><mo>(</mo><mi>i</mi><mo>)</mo></math></span> and to establish a spectral formula for the Hecke-eigenvalue twisted second moment of central <em>L</em>-values for the Picard group <span><math><msub><mrow><mi>PGL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>Z</mi><mo>[</mo><mi>i</mi><mo>]</mo><mo>)</mo></math></span>. Moreover, we develop the theory of distributional Hankel transform on <span><math><mi>C</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Hankel transform of Bessel functions on complex numbers and explicit spectral formulae over the Gaussian field\",\"authors\":\"Zhi Qi\",\"doi\":\"10.1016/j.jfa.2024.110723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, on the complex field <span><math><mi>C</mi></math></span>, we prove two integral formulae for the Hankel–Mellin transform and the double Fourier–Mellin transform of Bessel functions, both resulting the hypergeometric function. As two applications, we use the former integral formula to make explicit the spectral formula of Bruggeman and Motohashi for the fourth moment of Dedekind zeta function over the Gaussian number field <span><math><mi>Q</mi><mo>(</mo><mi>i</mi><mo>)</mo></math></span> and to establish a spectral formula for the Hecke-eigenvalue twisted second moment of central <em>L</em>-values for the Picard group <span><math><msub><mrow><mi>PGL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>Z</mi><mo>[</mo><mi>i</mi><mo>]</mo><mo>)</mo></math></span>. Moreover, we develop the theory of distributional Hankel transform on <span><math><mi>C</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span>.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624004117\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004117","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文在复数场 C 上证明了贝塞尔函数的汉克尔-梅林变换和双傅里叶-梅林变换的两个积分公式,这两个积分公式都产生了超几何函数。作为两个应用,我们利用前一个积分公式明确了布鲁格曼和本桥对高斯数域 Q(i) 的 Dedekind zeta 函数第四矩的谱公式,并建立了皮卡组 PGL2(Z[i]) 的赫克特征值扭转中心 L 值第二矩的谱公式。此外,我们还发展了 C∖{0} 上的分布汉克尔变换理论。
On the Hankel transform of Bessel functions on complex numbers and explicit spectral formulae over the Gaussian field
In this paper, on the complex field , we prove two integral formulae for the Hankel–Mellin transform and the double Fourier–Mellin transform of Bessel functions, both resulting the hypergeometric function. As two applications, we use the former integral formula to make explicit the spectral formula of Bruggeman and Motohashi for the fourth moment of Dedekind zeta function over the Gaussian number field and to establish a spectral formula for the Hecke-eigenvalue twisted second moment of central L-values for the Picard group . Moreover, we develop the theory of distributional Hankel transform on .
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis