{"title":"一般形式 Sturm-Liouville 方程的奇异 Dirichlet 边界问题可解性的必要条件和充分条件","authors":"N. Chernyavskaya , L. Shuster","doi":"10.1016/j.jde.2024.10.023","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the boundary problem<span><span><span>(1)</span><span><math><mrow><mo>−</mo><msup><mrow><mo>(</mo><mi>r</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup><mo>+</mo><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>R</mi><mo>,</mo></mrow></math></span></span></span><span><span><span>(2)</span><span><math><mrow><munder><mi>lim</mi><mrow><mo>|</mo><mi>x</mi><mo>|</mo><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn></mrow></math></span></span></span> under the following conditions:<ul><li><span>1)</span><span><div><span><math><mi>r</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mfrac><mrow><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>loc</mi></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>q</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>loc</mi></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>;</div></span></li><li><span>2)</span><span><div>equation <span><span>(1)</span></span> is correctly solvable in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>.</div></span></li></ul> We obtain necessary and sufficient requirements for the functions <em>r</em> and <em>q</em> under which, regardless of the choice of a function <span><math><mi>f</mi><mo>∈</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, the solution <span><math><mi>y</mi><mo>∈</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> of equation <span><span>(1)</span></span> satisfies <span><span>(2)</span></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1564-1601"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Necessary and sufficient conditions for the solvability of a singular Dirichlet boundary problem for the Sturm-Liouville equation of general form\",\"authors\":\"N. Chernyavskaya , L. Shuster\",\"doi\":\"10.1016/j.jde.2024.10.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the boundary problem<span><span><span>(1)</span><span><math><mrow><mo>−</mo><msup><mrow><mo>(</mo><mi>r</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup><mo>+</mo><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>R</mi><mo>,</mo></mrow></math></span></span></span><span><span><span>(2)</span><span><math><mrow><munder><mi>lim</mi><mrow><mo>|</mo><mi>x</mi><mo>|</mo><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn></mrow></math></span></span></span> under the following conditions:<ul><li><span>1)</span><span><div><span><math><mi>r</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mfrac><mrow><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>loc</mi></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>q</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>loc</mi></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>;</div></span></li><li><span>2)</span><span><div>equation <span><span>(1)</span></span> is correctly solvable in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>.</div></span></li></ul> We obtain necessary and sufficient requirements for the functions <em>r</em> and <em>q</em> under which, regardless of the choice of a function <span><math><mi>f</mi><mo>∈</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, the solution <span><math><mi>y</mi><mo>∈</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> of equation <span><span>(1)</span></span> satisfies <span><span>(2)</span></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 1564-1601\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006806\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006806","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑以下条件下的边界问题(1)-(r(x)y′(x))′+q(x)y(x)=f(x),x∈R,(2)lim|x|→∞y(x)=0:1)r>0,1r∈L1loc(R),q∈L1loc(R);2)equation (1) is correctly solvable in Lp(R), p∈(1,∞).我们得到了函数 r 和 q 的必要条件和充分条件,在这些条件下,无论选择哪个函数 f∈Lp(R),p∈(1,∞),方程 (1) 的解 y∈Lp(R) 都满足 (2)。
Necessary and sufficient conditions for the solvability of a singular Dirichlet boundary problem for the Sturm-Liouville equation of general form
We consider the boundary problem(1)(2) under the following conditions:
1)
;
2)
equation (1) is correctly solvable in , .
We obtain necessary and sufficient requirements for the functions r and q under which, regardless of the choice of a function , , the solution of equation (1) satisfies (2).
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics