一般形式 Sturm-Liouville 方程的奇异 Dirichlet 边界问题可解性的必要条件和充分条件

IF 2.4 2区 数学 Q1 MATHEMATICS
N. Chernyavskaya , L. Shuster
{"title":"一般形式 Sturm-Liouville 方程的奇异 Dirichlet 边界问题可解性的必要条件和充分条件","authors":"N. Chernyavskaya ,&nbsp;L. Shuster","doi":"10.1016/j.jde.2024.10.023","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the boundary problem<span><span><span>(1)</span><span><math><mrow><mo>−</mo><msup><mrow><mo>(</mo><mi>r</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup><mo>+</mo><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>R</mi><mo>,</mo></mrow></math></span></span></span><span><span><span>(2)</span><span><math><mrow><munder><mi>lim</mi><mrow><mo>|</mo><mi>x</mi><mo>|</mo><mo>→</mo><mo>∞</mo></mrow></munder><mo>⁡</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn></mrow></math></span></span></span> under the following conditions:<ul><li><span>1)</span><span><div><span><math><mi>r</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace><mfrac><mrow><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>loc</mi></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>q</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>loc</mi></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>;</div></span></li><li><span>2)</span><span><div>equation <span><span>(1)</span></span> is correctly solvable in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>.</div></span></li></ul> We obtain necessary and sufficient requirements for the functions <em>r</em> and <em>q</em> under which, regardless of the choice of a function <span><math><mi>f</mi><mo>∈</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, the solution <span><math><mi>y</mi><mo>∈</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> of equation <span><span>(1)</span></span> satisfies <span><span>(2)</span></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1564-1601"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Necessary and sufficient conditions for the solvability of a singular Dirichlet boundary problem for the Sturm-Liouville equation of general form\",\"authors\":\"N. Chernyavskaya ,&nbsp;L. Shuster\",\"doi\":\"10.1016/j.jde.2024.10.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the boundary problem<span><span><span>(1)</span><span><math><mrow><mo>−</mo><msup><mrow><mo>(</mo><mi>r</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></mrow><mrow><mo>′</mo></mrow></msup><mo>+</mo><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>R</mi><mo>,</mo></mrow></math></span></span></span><span><span><span>(2)</span><span><math><mrow><munder><mi>lim</mi><mrow><mo>|</mo><mi>x</mi><mo>|</mo><mo>→</mo><mo>∞</mo></mrow></munder><mo>⁡</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn></mrow></math></span></span></span> under the following conditions:<ul><li><span>1)</span><span><div><span><math><mi>r</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace><mfrac><mrow><mn>1</mn></mrow><mrow><mi>r</mi></mrow></mfrac><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>loc</mi></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>q</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>loc</mi></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>;</div></span></li><li><span>2)</span><span><div>equation <span><span>(1)</span></span> is correctly solvable in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>.</div></span></li></ul> We obtain necessary and sufficient requirements for the functions <em>r</em> and <em>q</em> under which, regardless of the choice of a function <span><math><mi>f</mi><mo>∈</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, the solution <span><math><mi>y</mi><mo>∈</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> of equation <span><span>(1)</span></span> satisfies <span><span>(2)</span></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 1564-1601\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006806\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006806","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑以下条件下的边界问题(1)-(r(x)y′(x))′+q(x)y(x)=f(x),x∈R,(2)lim|x|→∞y(x)=0:1)r>0,1r∈L1loc(R),q∈L1loc(R);2)equation (1) is correctly solvable in Lp(R), p∈(1,∞).我们得到了函数 r 和 q 的必要条件和充分条件,在这些条件下,无论选择哪个函数 f∈Lp(R),p∈(1,∞),方程 (1) 的解 y∈Lp(R) 都满足 (2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Necessary and sufficient conditions for the solvability of a singular Dirichlet boundary problem for the Sturm-Liouville equation of general form
We consider the boundary problem(1)(r(x)y(x))+q(x)y(x)=f(x),xR,(2)lim|x|y(x)=0 under the following conditions:
  • 1)
    r>0,1rL1loc(R),qL1loc(R);
  • 2)
    equation (1) is correctly solvable in Lp(R), p(1,).
We obtain necessary and sufficient requirements for the functions r and q under which, regardless of the choice of a function fLp(R), p(1,), the solution yLp(R) of equation (1) satisfies (2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信