{"title":"混合局部和非局部双相函数的正则性结果","authors":"Sun-Sig Byun , Ho-Sik Lee , Kyeong Song","doi":"10.1016/j.jde.2024.10.028","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the De Giorgi-Nash-Moser theory for minimizers of mixed local and nonlocal functionals modeled after<span><span><span><math><mi>v</mi><mo>↦</mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></munder><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></munder><mfrac><mrow><mo>|</mo><mi>v</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>−</mo><mi>v</mi><mo>(</mo><mi>y</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>n</mi><mo>+</mo><mi>s</mi><mi>p</mi></mrow></msup></mrow></mfrac><mspace></mspace><mi>d</mi><mi>x</mi><mi>d</mi><mi>y</mi><mo>+</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mi>a</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>D</mi><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></math></span></span></span> where <span><math><mn>0</mn><mo><</mo><mi>s</mi><mo><</mo><mn>1</mn><mo><</mo><mi>p</mi><mo>≤</mo><mi>q</mi></math></span> and <span><math><mi>a</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>≥</mo><mn>0</mn></math></span>. In particular, we prove Hölder regularity and Harnack inequality under possibly sharp assumptions on <span><math><mi>s</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>q</mi></math></span> and <span><math><mi>a</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1528-1563"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity results for mixed local and nonlocal double phase functionals\",\"authors\":\"Sun-Sig Byun , Ho-Sik Lee , Kyeong Song\",\"doi\":\"10.1016/j.jde.2024.10.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the De Giorgi-Nash-Moser theory for minimizers of mixed local and nonlocal functionals modeled after<span><span><span><math><mi>v</mi><mo>↦</mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></munder><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></munder><mfrac><mrow><mo>|</mo><mi>v</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>−</mo><mi>v</mi><mo>(</mo><mi>y</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>n</mi><mo>+</mo><mi>s</mi><mi>p</mi></mrow></msup></mrow></mfrac><mspace></mspace><mi>d</mi><mi>x</mi><mi>d</mi><mi>y</mi><mo>+</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mi>a</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>D</mi><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></math></span></span></span> where <span><math><mn>0</mn><mo><</mo><mi>s</mi><mo><</mo><mn>1</mn><mo><</mo><mi>p</mi><mo>≤</mo><mi>q</mi></math></span> and <span><math><mi>a</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>≥</mo><mn>0</mn></math></span>. In particular, we prove Hölder regularity and Harnack inequality under possibly sharp assumptions on <span><math><mi>s</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>q</mi></math></span> and <span><math><mi>a</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 1528-1563\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006843\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006843","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Regularity results for mixed local and nonlocal double phase functionals
We investigate the De Giorgi-Nash-Moser theory for minimizers of mixed local and nonlocal functionals modeled after where and . In particular, we prove Hölder regularity and Harnack inequality under possibly sharp assumptions on and .
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics