求解分数终值问题的牛顿程序

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Luigi Brugnano , Gianmarco Gurioli , Felice Iavernaro
{"title":"求解分数终值问题的牛顿程序","authors":"Luigi Brugnano ,&nbsp;Gianmarco Gurioli ,&nbsp;Felice Iavernaro","doi":"10.1016/j.amc.2024.129164","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we consider the numerical solution of <em>fractional terminal value problems</em>: namely, <em>terminal value problems for fractional differential equations</em>. In particular, the proposed method uses a Newton-type iteration which is particularly efficient when coupled with a recently-introduced step-by-step procedure for solving <em>fractional initial value problems</em>, i.e., <em>initial value problems for fractional differential equations</em>. As a result, the method is able to produce spectrally accurate solutions of fractional terminal value problems. Some numerical tests are reported to make evidence of its effectiveness.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A shooting-Newton procedure for solving fractional terminal value problems\",\"authors\":\"Luigi Brugnano ,&nbsp;Gianmarco Gurioli ,&nbsp;Felice Iavernaro\",\"doi\":\"10.1016/j.amc.2024.129164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we consider the numerical solution of <em>fractional terminal value problems</em>: namely, <em>terminal value problems for fractional differential equations</em>. In particular, the proposed method uses a Newton-type iteration which is particularly efficient when coupled with a recently-introduced step-by-step procedure for solving <em>fractional initial value problems</em>, i.e., <em>initial value problems for fractional differential equations</em>. As a result, the method is able to produce spectrally accurate solutions of fractional terminal value problems. Some numerical tests are reported to make evidence of its effectiveness.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324006258\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324006258","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了分数终值问题的数值解法:即分数微分方程的终值问题。特别是,本文提出的方法采用牛顿迭代法,该方法与最近引入的分步求解分数初值问题(即分数微分方程的初值问题)的程序相结合,效率特别高。因此,该方法能够产生分数终值问题的光谱精确解。报告中的一些数值测试证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A shooting-Newton procedure for solving fractional terminal value problems
In this paper we consider the numerical solution of fractional terminal value problems: namely, terminal value problems for fractional differential equations. In particular, the proposed method uses a Newton-type iteration which is particularly efficient when coupled with a recently-introduced step-by-step procedure for solving fractional initial value problems, i.e., initial value problems for fractional differential equations. As a result, the method is able to produce spectrally accurate solutions of fractional terminal value problems. Some numerical tests are reported to make evidence of its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信