温度相关粘度对粘弹性流体中双扩散对流的线性和弱非线性稳定性的影响

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Joginder Singh Dhiman , Khushboo Gupta , Praveen Kumar Sharma
{"title":"温度相关粘度对粘弹性流体中双扩散对流的线性和弱非线性稳定性的影响","authors":"Joginder Singh Dhiman ,&nbsp;Khushboo Gupta ,&nbsp;Praveen Kumar Sharma","doi":"10.1016/j.cjph.2024.10.011","DOIUrl":null,"url":null,"abstract":"<div><div>The impact of temperature-dependent viscosity on the double-diffusive viscoelastic convective fluids is investigated, with applications in heat transfer, polymer processing, food industry, biomedical engineering, etc. Both linear and weakly nonlinear analyses are carried out to determine the stability of fluids using the Oldroyd-B model. Analytical criteria for the onset of linear stationary and oscillatory convection are derived. The effects of rheological parameters, linearly and exponentially varying viscosity, salinity Rayleigh number and Prandtl number on the system’s stability are investigated. Linear stability analysis reveals that the interaction between thermal and solute diffusions with rheological parameters favours oscillatory convection over stationary convection. In weakly nonlinear theory, a power series expansion derives a Landau amplitude equation, allowing heat and mass transfer analysis in viscoelastic fluids with temperature-dependent viscosity. Numerical results highlight the effects of variable viscosity on heat and mass transfer rates, represented by Nusselt and Sherwood numbers. Further, the weakly non-linear stability analysis evaluates the impact of the Prandtl number, rheological parameters and salinity Rayleigh number on heat and mass transfer rates. These findings are compared with existing results to validate and enhance our understanding of fluid behaviour under different conditions.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"92 ","pages":"Pages 1061-1077"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of temperature-dependent viscosity on linear and weakly nonlinear stability of double-diffusive convection in viscoelastic fluid\",\"authors\":\"Joginder Singh Dhiman ,&nbsp;Khushboo Gupta ,&nbsp;Praveen Kumar Sharma\",\"doi\":\"10.1016/j.cjph.2024.10.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The impact of temperature-dependent viscosity on the double-diffusive viscoelastic convective fluids is investigated, with applications in heat transfer, polymer processing, food industry, biomedical engineering, etc. Both linear and weakly nonlinear analyses are carried out to determine the stability of fluids using the Oldroyd-B model. Analytical criteria for the onset of linear stationary and oscillatory convection are derived. The effects of rheological parameters, linearly and exponentially varying viscosity, salinity Rayleigh number and Prandtl number on the system’s stability are investigated. Linear stability analysis reveals that the interaction between thermal and solute diffusions with rheological parameters favours oscillatory convection over stationary convection. In weakly nonlinear theory, a power series expansion derives a Landau amplitude equation, allowing heat and mass transfer analysis in viscoelastic fluids with temperature-dependent viscosity. Numerical results highlight the effects of variable viscosity on heat and mass transfer rates, represented by Nusselt and Sherwood numbers. Further, the weakly non-linear stability analysis evaluates the impact of the Prandtl number, rheological parameters and salinity Rayleigh number on heat and mass transfer rates. These findings are compared with existing results to validate and enhance our understanding of fluid behaviour under different conditions.</div></div>\",\"PeriodicalId\":10340,\"journal\":{\"name\":\"Chinese Journal of Physics\",\"volume\":\"92 \",\"pages\":\"Pages 1061-1077\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0577907324004027\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907324004027","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了温度相关粘度对双扩散粘弹性对流流体的影响,并将其应用于传热、聚合物加工、食品工业、生物医学工程等领域。利用 Oldroyd-B 模型进行了线性和弱非线性分析,以确定流体的稳定性。得出了线性静止和振荡对流开始的分析标准。研究了流变参数、线性和指数变化的粘度、盐度雷利数和普朗特尔数对系统稳定性的影响。线性稳定性分析表明,热扩散和溶质扩散与流变参数之间的相互作用有利于振荡对流,而不是静止对流。在弱非线性理论中,通过幂级数展开得出了朗道振幅方程,从而可以分析粘弹性流体中与温度相关的粘度的传热和传质情况。数值结果凸显了粘度变化对传热和传质速率的影响,并以努塞尔特数和舍伍德数表示。此外,弱非线性稳定性分析评估了普朗特数、流变参数和盐度雷利数对传热和传质速率的影响。这些研究结果与现有结果进行了比较,以验证并加深我们对不同条件下流体行为的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of temperature-dependent viscosity on linear and weakly nonlinear stability of double-diffusive convection in viscoelastic fluid
The impact of temperature-dependent viscosity on the double-diffusive viscoelastic convective fluids is investigated, with applications in heat transfer, polymer processing, food industry, biomedical engineering, etc. Both linear and weakly nonlinear analyses are carried out to determine the stability of fluids using the Oldroyd-B model. Analytical criteria for the onset of linear stationary and oscillatory convection are derived. The effects of rheological parameters, linearly and exponentially varying viscosity, salinity Rayleigh number and Prandtl number on the system’s stability are investigated. Linear stability analysis reveals that the interaction between thermal and solute diffusions with rheological parameters favours oscillatory convection over stationary convection. In weakly nonlinear theory, a power series expansion derives a Landau amplitude equation, allowing heat and mass transfer analysis in viscoelastic fluids with temperature-dependent viscosity. Numerical results highlight the effects of variable viscosity on heat and mass transfer rates, represented by Nusselt and Sherwood numbers. Further, the weakly non-linear stability analysis evaluates the impact of the Prandtl number, rheological parameters and salinity Rayleigh number on heat and mass transfer rates. These findings are compared with existing results to validate and enhance our understanding of fluid behaviour under different conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信