Ahmed E. Elbakhshwan , Muhammed A. Hassan , Mahmoud A. Kassem , Mohamad T. Araji
{"title":"太阳能吸收辐射冷却系统的热舒适约束非线性运行优化","authors":"Ahmed E. Elbakhshwan , Muhammed A. Hassan , Mahmoud A. Kassem , Mohamad T. Araji","doi":"10.1016/j.enconman.2024.119204","DOIUrl":null,"url":null,"abstract":"<div><div>With the increasing demand for sustainable building solutions, especially under extreme weather conditions, there is a growing need for renewable-powered cooling systems that can minimize energy consumption and carbon emissions. Solar-absorption-radiant cooling systems offer a promising alternative to traditional air conditioning systems, but their effectiveness relies on efficient control strategies. This study investigates the optimal control of a solar-absorption-radiant cooling system for a single-story office building using non-linear programming (NLP) to minimize operating costs while maintaining thermal comfort. This is achieved by directly integrating the building model and thermal comfort calculations within the optimization procedure. By incorporating a solar collector, storage tank, assisting boiler, and absorption chiller, the system achieves a solar fraction of 0.8, minimizing daily operating costs to 2.11 USD and carbon emissions to ∼ 39.1 <span><math><mrow><mi>k</mi><msub><mi>g</mi><mrow><mi>C</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></msub></mrow></math></span>. The system maintains an average PMV of 0.14, an operative temperature of 25.63 °C, and a coefficient of performance of 0.72. The study also explores the impact of varying thermal comfort constraints, ventilation rates, and inlet air temperatures on system performance. Stricter comfort constraints (PMV=-0.2 to 0.2) increase costs and emissions by 30.96 % and 37.5 % respectively, due to increased reliance on the natural gas boiler. Doubling the ventilation rate based on fresh outdoor air increases daily costs and emissions by 19 % and 22.6 % respectively. Conversely, utilizing a supplementary system to supply ventilation air at 25 °C significantly reduces costs and emissions by 26.2 % and 25.4 % respectively, and increases the solar fraction to 0.92. Compared to a conventional system powered solely by a natural gas boiler, the solar-powered system achieves substantial cost savings (45.9 %), reduced carbon emissions (52.5 %), and improved thermal comfort, highlighting the potential of this technology for sustainable building operations.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"322 ","pages":"Article 119204"},"PeriodicalIF":9.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal comfort-constrained nonlinear operational optimization of a solar-absorption-radiant cooling system\",\"authors\":\"Ahmed E. Elbakhshwan , Muhammed A. Hassan , Mahmoud A. Kassem , Mohamad T. Araji\",\"doi\":\"10.1016/j.enconman.2024.119204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the increasing demand for sustainable building solutions, especially under extreme weather conditions, there is a growing need for renewable-powered cooling systems that can minimize energy consumption and carbon emissions. Solar-absorption-radiant cooling systems offer a promising alternative to traditional air conditioning systems, but their effectiveness relies on efficient control strategies. This study investigates the optimal control of a solar-absorption-radiant cooling system for a single-story office building using non-linear programming (NLP) to minimize operating costs while maintaining thermal comfort. This is achieved by directly integrating the building model and thermal comfort calculations within the optimization procedure. By incorporating a solar collector, storage tank, assisting boiler, and absorption chiller, the system achieves a solar fraction of 0.8, minimizing daily operating costs to 2.11 USD and carbon emissions to ∼ 39.1 <span><math><mrow><mi>k</mi><msub><mi>g</mi><mrow><mi>C</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></msub></mrow></math></span>. The system maintains an average PMV of 0.14, an operative temperature of 25.63 °C, and a coefficient of performance of 0.72. The study also explores the impact of varying thermal comfort constraints, ventilation rates, and inlet air temperatures on system performance. Stricter comfort constraints (PMV=-0.2 to 0.2) increase costs and emissions by 30.96 % and 37.5 % respectively, due to increased reliance on the natural gas boiler. Doubling the ventilation rate based on fresh outdoor air increases daily costs and emissions by 19 % and 22.6 % respectively. Conversely, utilizing a supplementary system to supply ventilation air at 25 °C significantly reduces costs and emissions by 26.2 % and 25.4 % respectively, and increases the solar fraction to 0.92. Compared to a conventional system powered solely by a natural gas boiler, the solar-powered system achieves substantial cost savings (45.9 %), reduced carbon emissions (52.5 %), and improved thermal comfort, highlighting the potential of this technology for sustainable building operations.</div></div>\",\"PeriodicalId\":11664,\"journal\":{\"name\":\"Energy Conversion and Management\",\"volume\":\"322 \",\"pages\":\"Article 119204\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196890424011452\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424011452","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Thermal comfort-constrained nonlinear operational optimization of a solar-absorption-radiant cooling system
With the increasing demand for sustainable building solutions, especially under extreme weather conditions, there is a growing need for renewable-powered cooling systems that can minimize energy consumption and carbon emissions. Solar-absorption-radiant cooling systems offer a promising alternative to traditional air conditioning systems, but their effectiveness relies on efficient control strategies. This study investigates the optimal control of a solar-absorption-radiant cooling system for a single-story office building using non-linear programming (NLP) to minimize operating costs while maintaining thermal comfort. This is achieved by directly integrating the building model and thermal comfort calculations within the optimization procedure. By incorporating a solar collector, storage tank, assisting boiler, and absorption chiller, the system achieves a solar fraction of 0.8, minimizing daily operating costs to 2.11 USD and carbon emissions to ∼ 39.1 . The system maintains an average PMV of 0.14, an operative temperature of 25.63 °C, and a coefficient of performance of 0.72. The study also explores the impact of varying thermal comfort constraints, ventilation rates, and inlet air temperatures on system performance. Stricter comfort constraints (PMV=-0.2 to 0.2) increase costs and emissions by 30.96 % and 37.5 % respectively, due to increased reliance on the natural gas boiler. Doubling the ventilation rate based on fresh outdoor air increases daily costs and emissions by 19 % and 22.6 % respectively. Conversely, utilizing a supplementary system to supply ventilation air at 25 °C significantly reduces costs and emissions by 26.2 % and 25.4 % respectively, and increases the solar fraction to 0.92. Compared to a conventional system powered solely by a natural gas boiler, the solar-powered system achieves substantial cost savings (45.9 %), reduced carbon emissions (52.5 %), and improved thermal comfort, highlighting the potential of this technology for sustainable building operations.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.