{"title":"涉及三维纳维-斯托克斯方程局部强解的应变张量中间特征值的扩展准则","authors":"Zhengguang Guo , Chol-Jun O","doi":"10.1016/j.aml.2024.109354","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we prove an extension criterion for a local strong solution to the 3D Navier–Stokes equations that only require control of the positive part of middle eigenvalue of strain tensor in the critical endpoint Besov space, i.e., <span><math><mrow><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mi>∞</mi><mo>,</mo><mi>∞</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mo>)</mo></mrow></mrow></math></span>. This gives a positive answer to the problem proposed by Miller <span><span>[1]</span></span> and improves the results by Wu <span><span>[2]</span></span>, <span><span>[3]</span></span>, <span><span>[4]</span></span>. The proof relies on the identity for enstrophy growth and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-norm estimate of the gradient of <span><math><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extension criterion involving the middle eigenvalue of the strain tensor on local strong solutions to the 3D Navier–Stokes equations\",\"authors\":\"Zhengguang Guo , Chol-Jun O\",\"doi\":\"10.1016/j.aml.2024.109354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we prove an extension criterion for a local strong solution to the 3D Navier–Stokes equations that only require control of the positive part of middle eigenvalue of strain tensor in the critical endpoint Besov space, i.e., <span><math><mrow><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mi>∞</mi><mo>,</mo><mi>∞</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mo>)</mo></mrow></mrow></math></span>. This gives a positive answer to the problem proposed by Miller <span><span>[1]</span></span> and improves the results by Wu <span><span>[2]</span></span>, <span><span>[3]</span></span>, <span><span>[4]</span></span>. The proof relies on the identity for enstrophy growth and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-norm estimate of the gradient of <span><math><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003744\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003744","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Extension criterion involving the middle eigenvalue of the strain tensor on local strong solutions to the 3D Navier–Stokes equations
In this article, we prove an extension criterion for a local strong solution to the 3D Navier–Stokes equations that only require control of the positive part of middle eigenvalue of strain tensor in the critical endpoint Besov space, i.e., . This gives a positive answer to the problem proposed by Miller [1] and improves the results by Wu [2], [3], [4]. The proof relies on the identity for enstrophy growth and -norm estimate of the gradient of .
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.