Suellen Furtado Vinagre , Lenize Batista Calvão , Alex Córdoba-Aguilar , Rhainer Guillermo Ferreira , e Leandro Juen
{"title":"亚马逊蜻蜓的微生境选择和体温调节","authors":"Suellen Furtado Vinagre , Lenize Batista Calvão , Alex Córdoba-Aguilar , Rhainer Guillermo Ferreira , e Leandro Juen","doi":"10.1016/j.jtherbio.2024.103998","DOIUrl":null,"url":null,"abstract":"<div><div>Insect eco-physiological traits are important for understanding their distribution and habitat selection, especially in the face of land use change. We estimated the average temperature of the thoracic surface of 20 Odonata (Insecta) species and classified them into thermoregulation categories according to their preferences for sunny or shaded habitats to assess their temperature variation. We tested the influence of air temperature and six morphological metrics related to thorax and abdomen size. We expected that: (i) heliothermic species would have higher thoracic temperatures compared to thermoconformer species; (ii) Zygopterans, due to their smaller body size, are less efficient at maintaining a constant body temperature relative to the air when compared to anisopterans; (iii) thorax volume would cause an increase in Odonata thoracic temperature, and abdomen length would cause a decrease. The study was conducted at 18 Amazonian streams in Eastern Amazonia. We observed differences of 2.5 °C in thoracic temperature between heliothermic and thermoconformer species, as predicted in the first hypothesis. Both suborders, Zygoptera and Anisoptera, use different morphological and environmental variables to control temperature. While Zygoptera thoracic temperature oscillated near and below air temperature (−1.28 ± 0.62), Anisoptera maintained temperatures above air temperature (1.81 ± 1.96). Air temperature influenced only the increase in Zygoptera thoracic temperature, supporting our second hypothesis. The third hypothesis was corroborated for order Odonata, but partially for its suborders. Zygoptera thoracic temperature was only related to abdomen length, which was proportional to a temperature decrease. Anisoptera temperature showed a relationship only with thoracic metrics, especially thorax volume, which had a significant contribution to temperature increase. Despite the observed differences, which varied according to size, we noted exceptions in the thermal characteristics of some species that deviated from these predictions. Therefore, we emphasize the importance of considering the interaction of other eco-physiological aspects in dragonfly temperature regulation.</div></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":"125 ","pages":"Article 103998"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microhabitat selection and thermoregulation in amazonian dragonflies\",\"authors\":\"Suellen Furtado Vinagre , Lenize Batista Calvão , Alex Córdoba-Aguilar , Rhainer Guillermo Ferreira , e Leandro Juen\",\"doi\":\"10.1016/j.jtherbio.2024.103998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Insect eco-physiological traits are important for understanding their distribution and habitat selection, especially in the face of land use change. We estimated the average temperature of the thoracic surface of 20 Odonata (Insecta) species and classified them into thermoregulation categories according to their preferences for sunny or shaded habitats to assess their temperature variation. We tested the influence of air temperature and six morphological metrics related to thorax and abdomen size. We expected that: (i) heliothermic species would have higher thoracic temperatures compared to thermoconformer species; (ii) Zygopterans, due to their smaller body size, are less efficient at maintaining a constant body temperature relative to the air when compared to anisopterans; (iii) thorax volume would cause an increase in Odonata thoracic temperature, and abdomen length would cause a decrease. The study was conducted at 18 Amazonian streams in Eastern Amazonia. We observed differences of 2.5 °C in thoracic temperature between heliothermic and thermoconformer species, as predicted in the first hypothesis. Both suborders, Zygoptera and Anisoptera, use different morphological and environmental variables to control temperature. While Zygoptera thoracic temperature oscillated near and below air temperature (−1.28 ± 0.62), Anisoptera maintained temperatures above air temperature (1.81 ± 1.96). Air temperature influenced only the increase in Zygoptera thoracic temperature, supporting our second hypothesis. The third hypothesis was corroborated for order Odonata, but partially for its suborders. Zygoptera thoracic temperature was only related to abdomen length, which was proportional to a temperature decrease. Anisoptera temperature showed a relationship only with thoracic metrics, especially thorax volume, which had a significant contribution to temperature increase. Despite the observed differences, which varied according to size, we noted exceptions in the thermal characteristics of some species that deviated from these predictions. Therefore, we emphasize the importance of considering the interaction of other eco-physiological aspects in dragonfly temperature regulation.</div></div>\",\"PeriodicalId\":17428,\"journal\":{\"name\":\"Journal of thermal biology\",\"volume\":\"125 \",\"pages\":\"Article 103998\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of thermal biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030645652400216X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030645652400216X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Microhabitat selection and thermoregulation in amazonian dragonflies
Insect eco-physiological traits are important for understanding their distribution and habitat selection, especially in the face of land use change. We estimated the average temperature of the thoracic surface of 20 Odonata (Insecta) species and classified them into thermoregulation categories according to their preferences for sunny or shaded habitats to assess their temperature variation. We tested the influence of air temperature and six morphological metrics related to thorax and abdomen size. We expected that: (i) heliothermic species would have higher thoracic temperatures compared to thermoconformer species; (ii) Zygopterans, due to their smaller body size, are less efficient at maintaining a constant body temperature relative to the air when compared to anisopterans; (iii) thorax volume would cause an increase in Odonata thoracic temperature, and abdomen length would cause a decrease. The study was conducted at 18 Amazonian streams in Eastern Amazonia. We observed differences of 2.5 °C in thoracic temperature between heliothermic and thermoconformer species, as predicted in the first hypothesis. Both suborders, Zygoptera and Anisoptera, use different morphological and environmental variables to control temperature. While Zygoptera thoracic temperature oscillated near and below air temperature (−1.28 ± 0.62), Anisoptera maintained temperatures above air temperature (1.81 ± 1.96). Air temperature influenced only the increase in Zygoptera thoracic temperature, supporting our second hypothesis. The third hypothesis was corroborated for order Odonata, but partially for its suborders. Zygoptera thoracic temperature was only related to abdomen length, which was proportional to a temperature decrease. Anisoptera temperature showed a relationship only with thoracic metrics, especially thorax volume, which had a significant contribution to temperature increase. Despite the observed differences, which varied according to size, we noted exceptions in the thermal characteristics of some species that deviated from these predictions. Therefore, we emphasize the importance of considering the interaction of other eco-physiological aspects in dragonfly temperature regulation.
期刊介绍:
The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are:
• The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature
• The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature
• Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause
• Effects of temperature on reproduction and development, growth, ageing and life-span
• Studies on modelling heat transfer between organisms and their environment
• The contributions of temperature to effects of climate change on animal species and man
• Studies of conservation biology and physiology related to temperature
• Behavioural and physiological regulation of body temperature including its pathophysiology and fever
• Medical applications of hypo- and hyperthermia
Article types:
• Original articles
• Review articles