Maria Kanelli, Neelkanth M. Bardhan, Morteza Sarmadi, Behnaz Eshaghi, Shahad K. Alsaiari, William T. Rothwell, Apurva Pardeshi, Dhruv Varshney, Dominique C. De Fiesta, Howard Mak, Virginia Spanoudaki, Nicole Henning, Ashutosh Kumar, Jooli Han, Angela M. Belcher*, Robert Langer* and Ana Jaklenec*,
{"title":"在乳腺癌模型中使用基于近红外响应性 MoS2 微颗粒的脉冲、光和化疗治疗机器学习优化系统","authors":"Maria Kanelli, Neelkanth M. Bardhan, Morteza Sarmadi, Behnaz Eshaghi, Shahad K. Alsaiari, William T. Rothwell, Apurva Pardeshi, Dhruv Varshney, Dominique C. De Fiesta, Howard Mak, Virginia Spanoudaki, Nicole Henning, Ashutosh Kumar, Jooli Han, Angela M. Belcher*, Robert Langer* and Ana Jaklenec*, ","doi":"10.1021/acsnano.4c0784310.1021/acsnano.4c07843","DOIUrl":null,"url":null,"abstract":"<p >Multimodal cancer therapies are often required for progressive cancers due to the high persistence and mortality of the disease and the negative systemic side effects of traditional therapeutic methods. Thus, the development of less invasive modalities for recurring treatment cycles is of clinical significance. Herein, a light-activatable microparticle system was developed for localized, pulsatile delivery of anticancer drugs with simultaneous thermal ablation by applying controlled ON–OFF thermal cycles using near-infrared laser irradiation. The system is composed of poly(caprolactone) microparticles of 200 μm size containing molybdenum disulfide (MoS<sub>2</sub>) nanosheets as the photothermal agent and hydrophilic doxorubicin or hydrophobic violacein, as model drugs. Upon irradiation, the nanosheets heat up to ≥50 °C leading to polymer softening and release of the drug. MoS<sub>2</sub> nanosheets exhibit high photothermal conversion efficiency and require low-power laser irradiation. A machine learning algorithm was applied to acquire the optimal laser operation conditions. In a mouse subcutaneous model of 4T1 triple-negative breast cancer, 25 microparticles were intratumorally administered, and after 3-cycle laser treatment, the system conferred synergistic phototherapeutic and chemotherapeutic effects. Our on-demand, pulsatile synergistic treatment resulted in increased median survival up to 39 days post start of treatment compared to untreated mice, with complete eradication of the tumors at the primary site. Such a system is therapeutically relevant for patients in need of recurring cycles of treatment on small tumors, since it provides precise localization and low invasiveness and is not cross-resistant with other treatments.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 44","pages":"30433–30447 30433–30447"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Machine Learning-Optimized System for Pulsatile, Photo- and Chemotherapeutic Treatment Using Near-Infrared Responsive MoS2-Based Microparticles in a Breast Cancer Model\",\"authors\":\"Maria Kanelli, Neelkanth M. Bardhan, Morteza Sarmadi, Behnaz Eshaghi, Shahad K. Alsaiari, William T. Rothwell, Apurva Pardeshi, Dhruv Varshney, Dominique C. De Fiesta, Howard Mak, Virginia Spanoudaki, Nicole Henning, Ashutosh Kumar, Jooli Han, Angela M. Belcher*, Robert Langer* and Ana Jaklenec*, \",\"doi\":\"10.1021/acsnano.4c0784310.1021/acsnano.4c07843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Multimodal cancer therapies are often required for progressive cancers due to the high persistence and mortality of the disease and the negative systemic side effects of traditional therapeutic methods. Thus, the development of less invasive modalities for recurring treatment cycles is of clinical significance. Herein, a light-activatable microparticle system was developed for localized, pulsatile delivery of anticancer drugs with simultaneous thermal ablation by applying controlled ON–OFF thermal cycles using near-infrared laser irradiation. The system is composed of poly(caprolactone) microparticles of 200 μm size containing molybdenum disulfide (MoS<sub>2</sub>) nanosheets as the photothermal agent and hydrophilic doxorubicin or hydrophobic violacein, as model drugs. Upon irradiation, the nanosheets heat up to ≥50 °C leading to polymer softening and release of the drug. MoS<sub>2</sub> nanosheets exhibit high photothermal conversion efficiency and require low-power laser irradiation. A machine learning algorithm was applied to acquire the optimal laser operation conditions. In a mouse subcutaneous model of 4T1 triple-negative breast cancer, 25 microparticles were intratumorally administered, and after 3-cycle laser treatment, the system conferred synergistic phototherapeutic and chemotherapeutic effects. Our on-demand, pulsatile synergistic treatment resulted in increased median survival up to 39 days post start of treatment compared to untreated mice, with complete eradication of the tumors at the primary site. Such a system is therapeutically relevant for patients in need of recurring cycles of treatment on small tumors, since it provides precise localization and low invasiveness and is not cross-resistant with other treatments.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"18 44\",\"pages\":\"30433–30447 30433–30447\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c07843\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c07843","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Machine Learning-Optimized System for Pulsatile, Photo- and Chemotherapeutic Treatment Using Near-Infrared Responsive MoS2-Based Microparticles in a Breast Cancer Model
Multimodal cancer therapies are often required for progressive cancers due to the high persistence and mortality of the disease and the negative systemic side effects of traditional therapeutic methods. Thus, the development of less invasive modalities for recurring treatment cycles is of clinical significance. Herein, a light-activatable microparticle system was developed for localized, pulsatile delivery of anticancer drugs with simultaneous thermal ablation by applying controlled ON–OFF thermal cycles using near-infrared laser irradiation. The system is composed of poly(caprolactone) microparticles of 200 μm size containing molybdenum disulfide (MoS2) nanosheets as the photothermal agent and hydrophilic doxorubicin or hydrophobic violacein, as model drugs. Upon irradiation, the nanosheets heat up to ≥50 °C leading to polymer softening and release of the drug. MoS2 nanosheets exhibit high photothermal conversion efficiency and require low-power laser irradiation. A machine learning algorithm was applied to acquire the optimal laser operation conditions. In a mouse subcutaneous model of 4T1 triple-negative breast cancer, 25 microparticles were intratumorally administered, and after 3-cycle laser treatment, the system conferred synergistic phototherapeutic and chemotherapeutic effects. Our on-demand, pulsatile synergistic treatment resulted in increased median survival up to 39 days post start of treatment compared to untreated mice, with complete eradication of the tumors at the primary site. Such a system is therapeutically relevant for patients in need of recurring cycles of treatment on small tumors, since it provides precise localization and low invasiveness and is not cross-resistant with other treatments.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.