金属离子对 MXene 膜的影响:钛空位的关键作用

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Qihui Kan, Pengfei Hou, Chunxiao Wang, Kun Lu, Shipeng Dong, Hang Zeng, Mian Li, Xing Meng*, Qing Huang and Liang Mao*, 
{"title":"金属离子对 MXene 膜的影响:钛空位的关键作用","authors":"Qihui Kan,&nbsp;Pengfei Hou,&nbsp;Chunxiao Wang,&nbsp;Kun Lu,&nbsp;Shipeng Dong,&nbsp;Hang Zeng,&nbsp;Mian Li,&nbsp;Xing Meng*,&nbsp;Qing Huang and Liang Mao*,&nbsp;","doi":"10.1021/acs.est.4c0826010.1021/acs.est.4c08260","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional transition metal carbides and nitrides (MXenes) and MXene-based membranes hold promise for applications including water purification and seawater desalination; however, their environmental behavior and fate in these matrices remain unknown. In this study, we systematically assessed the reaction efficiencies of Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> at varying important environmental conditions. Our experiments revealed that copper and iron ions accelerated the oxidation rate of Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> 55.4 and 33.4 times, respectively. TiO<sub>2</sub> and amorphous carbon were identified as the primary solid products. Based on <i>in situ</i> water-phase atomic force microscopy, atomic high-angle annular dark-field scanning transmission electron microscopy, and theoretical results, we postulate that metal ions enhance Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> oxidation by spontaneously migrating and anchoring at Ti vacancies, which then become active sites for this reaction. This process increases the adsorption of H<sub>2</sub>O and oxygen, making the Ti vacancy-rich surface convex area the most vulnerable site to attack. The findings in this study provide useful information for a comprehensive understanding of the interaction between MXene structural defects and metal ions as well as for the design and modification of MXene membranes resistant to metal ion impact.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"58 44","pages":"19861–19871 19861–19871"},"PeriodicalIF":10.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Metal Ions on MXene Membranes: Critical Role of Titanium Vacancies\",\"authors\":\"Qihui Kan,&nbsp;Pengfei Hou,&nbsp;Chunxiao Wang,&nbsp;Kun Lu,&nbsp;Shipeng Dong,&nbsp;Hang Zeng,&nbsp;Mian Li,&nbsp;Xing Meng*,&nbsp;Qing Huang and Liang Mao*,&nbsp;\",\"doi\":\"10.1021/acs.est.4c0826010.1021/acs.est.4c08260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Two-dimensional transition metal carbides and nitrides (MXenes) and MXene-based membranes hold promise for applications including water purification and seawater desalination; however, their environmental behavior and fate in these matrices remain unknown. In this study, we systematically assessed the reaction efficiencies of Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> at varying important environmental conditions. Our experiments revealed that copper and iron ions accelerated the oxidation rate of Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> 55.4 and 33.4 times, respectively. TiO<sub>2</sub> and amorphous carbon were identified as the primary solid products. Based on <i>in situ</i> water-phase atomic force microscopy, atomic high-angle annular dark-field scanning transmission electron microscopy, and theoretical results, we postulate that metal ions enhance Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> oxidation by spontaneously migrating and anchoring at Ti vacancies, which then become active sites for this reaction. This process increases the adsorption of H<sub>2</sub>O and oxygen, making the Ti vacancy-rich surface convex area the most vulnerable site to attack. The findings in this study provide useful information for a comprehensive understanding of the interaction between MXene structural defects and metal ions as well as for the design and modification of MXene membranes resistant to metal ion impact.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"58 44\",\"pages\":\"19861–19871 19861–19871\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.est.4c08260\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c08260","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

二维过渡金属碳化物和氮化物(MXenes)以及基于 MXene 的膜在水净化和海水淡化等应用中大有可为;然而,它们在这些基质中的环境行为和归宿仍然未知。在本研究中,我们系统地评估了 Ti3C2Tx 在不同重要环境条件下的反应效率。实验结果表明,铜离子和铁离子分别将 Ti3C2Tx 的氧化速率提高了 55.4 倍和 33.4 倍。二氧化钛和无定形碳被确定为主要固体产物。根据原位水相原子力显微镜、原子高角度环形暗场扫描透射电子显微镜和理论结果,我们推测金属离子通过自发迁移和锚定 Ti 空位来增强 Ti3C2Tx 的氧化,Ti 空位随后成为该反应的活性位点。这一过程增加了对 H2O 和氧气的吸附,使富含 Ti 空位的表面凹凸区域成为最容易受到攻击的部位。本研究的发现为全面了解 MXene 结构缺陷与金属离子之间的相互作用以及设计和改性耐金属离子冲击的 MXene 膜提供了有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Impact of Metal Ions on MXene Membranes: Critical Role of Titanium Vacancies

The Impact of Metal Ions on MXene Membranes: Critical Role of Titanium Vacancies

Two-dimensional transition metal carbides and nitrides (MXenes) and MXene-based membranes hold promise for applications including water purification and seawater desalination; however, their environmental behavior and fate in these matrices remain unknown. In this study, we systematically assessed the reaction efficiencies of Ti3C2Tx at varying important environmental conditions. Our experiments revealed that copper and iron ions accelerated the oxidation rate of Ti3C2Tx 55.4 and 33.4 times, respectively. TiO2 and amorphous carbon were identified as the primary solid products. Based on in situ water-phase atomic force microscopy, atomic high-angle annular dark-field scanning transmission electron microscopy, and theoretical results, we postulate that metal ions enhance Ti3C2Tx oxidation by spontaneously migrating and anchoring at Ti vacancies, which then become active sites for this reaction. This process increases the adsorption of H2O and oxygen, making the Ti vacancy-rich surface convex area the most vulnerable site to attack. The findings in this study provide useful information for a comprehensive understanding of the interaction between MXene structural defects and metal ions as well as for the design and modification of MXene membranes resistant to metal ion impact.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信