磷酸盐诱导的酸性微环境可提高 FeS 氧化过程中的污染物去除率

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Rongrong Ding, Junsheng Song, Guangyu Bi, Guannan Zhou*, Xiaocheng Liu, Dahong Huang and Yang Mu*, 
{"title":"磷酸盐诱导的酸性微环境可提高 FeS 氧化过程中的污染物去除率","authors":"Rongrong Ding,&nbsp;Junsheng Song,&nbsp;Guangyu Bi,&nbsp;Guannan Zhou*,&nbsp;Xiaocheng Liu,&nbsp;Dahong Huang and Yang Mu*,&nbsp;","doi":"10.1021/acs.est.4c0617010.1021/acs.est.4c06170","DOIUrl":null,"url":null,"abstract":"<p >The coexistence of mackinawite (FeS) and phosphate is widely observed in natural systems. However, the underlying mechanism regarding how phosphate influences the environmental behavior of FeS, especially during the FeS oxygenation in aquatic systems, remains in its fancy. This study for the first time reported that the presence of phosphate, even at a low concentration of 0.3 mM, significantly promoted the FeS-mediated O<sub>2</sub> activation and thus the pollutant degradation. The enhancement was attributed to a substantial increase in the generation of •OH, as evidenced by the electron paramagnetic resonance tests and the identification of the probing products. A combination of experiments and theoretical calculations revealed that phosphate adsorbed onto the FeS surface via a monodentate mononuclear configuration, establishing an acidic microenvironment on the FeS surface. Such acidic microenvironment not only increased the utilization efficiency of Fe(II) toward H<sub>2</sub>O<sub>2</sub> generation (i.e., <i></i><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mn>2</mn><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>+</mo><mn>2</mn><mi>F</mi><mi>e</mi><mrow><mo>(</mo><mi>I</mi><mi>I</mi><mo>)</mo></mrow><mo>→</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mn>2</mn><mi>F</mi><mi>e</mi><mrow><mo>(</mo><mi>I</mi><mi>I</mi><mi>I</mi><mo>)</mo></mrow></math>), but also prevented the subsequent side reaction of H<sub>2</sub>O<sub>2</sub> self-decomposition (i.e., <i></i><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>O</mi><msup><mrow><mi>H</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>→</mo><mi>H</mi><msubsup><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>−</mo></mrow></msubsup><mo>+</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math>). The results highlight the beneficial role of commonly encountered phosphate in FeS-based systems, which has profound implications for the degradation of waterborne contaminants.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"58 44","pages":"19883–19892 19883–19892"},"PeriodicalIF":10.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphate-Induced Acidic Microenvironment for Improved Contaminant Removal during FeS Oxygenation\",\"authors\":\"Rongrong Ding,&nbsp;Junsheng Song,&nbsp;Guangyu Bi,&nbsp;Guannan Zhou*,&nbsp;Xiaocheng Liu,&nbsp;Dahong Huang and Yang Mu*,&nbsp;\",\"doi\":\"10.1021/acs.est.4c0617010.1021/acs.est.4c06170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The coexistence of mackinawite (FeS) and phosphate is widely observed in natural systems. However, the underlying mechanism regarding how phosphate influences the environmental behavior of FeS, especially during the FeS oxygenation in aquatic systems, remains in its fancy. This study for the first time reported that the presence of phosphate, even at a low concentration of 0.3 mM, significantly promoted the FeS-mediated O<sub>2</sub> activation and thus the pollutant degradation. The enhancement was attributed to a substantial increase in the generation of •OH, as evidenced by the electron paramagnetic resonance tests and the identification of the probing products. A combination of experiments and theoretical calculations revealed that phosphate adsorbed onto the FeS surface via a monodentate mononuclear configuration, establishing an acidic microenvironment on the FeS surface. Such acidic microenvironment not only increased the utilization efficiency of Fe(II) toward H<sub>2</sub>O<sub>2</sub> generation (i.e., <i></i><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mn>2</mn><msup><mrow><mi>H</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>+</mo><mn>2</mn><mi>F</mi><mi>e</mi><mrow><mo>(</mo><mi>I</mi><mi>I</mi><mo>)</mo></mrow><mo>→</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mn>2</mn><mi>F</mi><mi>e</mi><mrow><mo>(</mo><mi>I</mi><mi>I</mi><mi>I</mi><mo>)</mo></mrow></math>), but also prevented the subsequent side reaction of H<sub>2</sub>O<sub>2</sub> self-decomposition (i.e., <i></i><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>O</mi><msup><mrow><mi>H</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>→</mo><mi>H</mi><msubsup><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>−</mo></mrow></msubsup><mo>+</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>O</mi></math>). The results highlight the beneficial role of commonly encountered phosphate in FeS-based systems, which has profound implications for the degradation of waterborne contaminants.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"58 44\",\"pages\":\"19883–19892 19883–19892\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.est.4c06170\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c06170","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

在自然系统中,人们广泛观察到马氏体(FeS)与磷酸盐共存的现象。然而,磷酸盐如何影响 FeS 的环境行为,特别是在水生系统中 FeS 充氧过程中的影响,其基本机制仍有待研究。本研究首次报道了磷酸盐的存在,即使是 0.3 mM 的低浓度磷酸盐,也能显著促进 FeS 介导的氧气活化,从而促进污染物降解。电子顺磁共振测试和探测产物的鉴定证明,这种促进作用归因于 -OH 生成的大幅增加。实验和理论计算相结合发现,磷酸盐通过单齿单核构型吸附到 FeS 表面,在 FeS 表面建立了酸性微环境。这种酸性微环境不仅提高了铁(II)对 H2O2 生成的利用效率(即 O2+2H++2Fe(II)→H2O2+2Fe(III) ),还阻止了 H2O2 自分解的后续副反应(即 H2O2+OH-→HO2-+H2O )。研究结果凸显了在以 FeS 为基础的体系中常见磷酸盐的有益作用,这对降解水性污染物具有深远的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Phosphate-Induced Acidic Microenvironment for Improved Contaminant Removal during FeS Oxygenation

Phosphate-Induced Acidic Microenvironment for Improved Contaminant Removal during FeS Oxygenation

The coexistence of mackinawite (FeS) and phosphate is widely observed in natural systems. However, the underlying mechanism regarding how phosphate influences the environmental behavior of FeS, especially during the FeS oxygenation in aquatic systems, remains in its fancy. This study for the first time reported that the presence of phosphate, even at a low concentration of 0.3 mM, significantly promoted the FeS-mediated O2 activation and thus the pollutant degradation. The enhancement was attributed to a substantial increase in the generation of •OH, as evidenced by the electron paramagnetic resonance tests and the identification of the probing products. A combination of experiments and theoretical calculations revealed that phosphate adsorbed onto the FeS surface via a monodentate mononuclear configuration, establishing an acidic microenvironment on the FeS surface. Such acidic microenvironment not only increased the utilization efficiency of Fe(II) toward H2O2 generation (i.e., O2+2H++2Fe(II)H2O2+2Fe(III)), but also prevented the subsequent side reaction of H2O2 self-decomposition (i.e., H2O2+OHHO2+H2O). The results highlight the beneficial role of commonly encountered phosphate in FeS-based systems, which has profound implications for the degradation of waterborne contaminants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信