Marie-Lena Schmalhofer, Said Farschtschi, Lan Kluwe, Victor Felix Mautner, Gerhard Adam, Lennart Well, Inka Ristow
{"title":"基于全身核磁共振成像,对无初始肿瘤负担但有新发周围神经鞘瘤证据的小儿 NF1 患者进行长期评估。","authors":"Marie-Lena Schmalhofer, Said Farschtschi, Lan Kluwe, Victor Felix Mautner, Gerhard Adam, Lennart Well, Inka Ristow","doi":"10.1186/s13023-024-03420-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Patients with neurofibromatosis type 1 (NF1) can develop plexiform neurofibromas (PN). Large tumor burden is a predictor for the development of malignant peripheral nerve sheath tumors. Whole-body magnetic resonance imaging (WB-MRI) is the recommended imaging method for the evaluation of PN. WB-MRI is recommended for NF1 patients at transition from adolescence to adulthood. In the absence of internal PN further follow-up WB-MRI is not considered necessary. PN are often detected in early childhood, leading to the assumption that they may be congenital lesions. It remains unclear whether this invariably applies to all patients or whether patients who initially displayed no tumors can still develop PN over time. Therefore, we retrospectively reviewed WB-MRI scans of pediatric patients with NF1 without initial tumor burden and compared these with long-term follow-up scans for presence of newly developed PN.</p><p><strong>Methods: </strong>We retrospectively reviewed WB-MRI scans of 17 NF1-children (twelve male; median age at initial scan: 9 [IQR 6.1-11.9] years) who initially displayed no PN. MRI scans with a follow-up interval of at least 6 years (median follow-up interval: 9 [IQR 5.6-12.4] years) were reviewed in consensus by two radiologists regarding the development of new PN over time.</p><p><strong>Results: </strong>New PN were identified in two out of 17 children without initial tumor burden in follow-up examinations. One of these two patients developed two larger distinct PN of 4.5 cm on the right upper arm and of 2.5 cm on the left thoracic wall between the age of ten and twelve. The second child developed multiple smaller PN along the major peripheral nerves between the age of eleven and 16. In addition, 15 of the children without initial tumor burden did not develop any distinct tumors for a period of at least 6 years.</p><p><strong>Conclusion: </strong>Our results indicate that PN can be newly detected in pediatric patients over time, even if no PN were detected on initial MRI scans. Therefore, it seems reasonable to perform at least a second MRI in pediatric NF1 patients at transition to adulthood, even if they did not display any tumor burden on initial MRI, and when the MRI was performed significantly under the age of 18. With this approach, tumors that may have developed between scans can be detected and patients at risk for complications can be identified.</p>","PeriodicalId":19651,"journal":{"name":"Orphanet Journal of Rare Diseases","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536773/pdf/","citationCount":"0","resultStr":"{\"title\":\"Whole-body MRI-based long-term evaluation of pediatric NF1 patients without initial tumor burden with evidence of newly developed peripheral nerve sheath tumors.\",\"authors\":\"Marie-Lena Schmalhofer, Said Farschtschi, Lan Kluwe, Victor Felix Mautner, Gerhard Adam, Lennart Well, Inka Ristow\",\"doi\":\"10.1186/s13023-024-03420-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Patients with neurofibromatosis type 1 (NF1) can develop plexiform neurofibromas (PN). Large tumor burden is a predictor for the development of malignant peripheral nerve sheath tumors. Whole-body magnetic resonance imaging (WB-MRI) is the recommended imaging method for the evaluation of PN. WB-MRI is recommended for NF1 patients at transition from adolescence to adulthood. In the absence of internal PN further follow-up WB-MRI is not considered necessary. PN are often detected in early childhood, leading to the assumption that they may be congenital lesions. It remains unclear whether this invariably applies to all patients or whether patients who initially displayed no tumors can still develop PN over time. Therefore, we retrospectively reviewed WB-MRI scans of pediatric patients with NF1 without initial tumor burden and compared these with long-term follow-up scans for presence of newly developed PN.</p><p><strong>Methods: </strong>We retrospectively reviewed WB-MRI scans of 17 NF1-children (twelve male; median age at initial scan: 9 [IQR 6.1-11.9] years) who initially displayed no PN. MRI scans with a follow-up interval of at least 6 years (median follow-up interval: 9 [IQR 5.6-12.4] years) were reviewed in consensus by two radiologists regarding the development of new PN over time.</p><p><strong>Results: </strong>New PN were identified in two out of 17 children without initial tumor burden in follow-up examinations. One of these two patients developed two larger distinct PN of 4.5 cm on the right upper arm and of 2.5 cm on the left thoracic wall between the age of ten and twelve. The second child developed multiple smaller PN along the major peripheral nerves between the age of eleven and 16. In addition, 15 of the children without initial tumor burden did not develop any distinct tumors for a period of at least 6 years.</p><p><strong>Conclusion: </strong>Our results indicate that PN can be newly detected in pediatric patients over time, even if no PN were detected on initial MRI scans. Therefore, it seems reasonable to perform at least a second MRI in pediatric NF1 patients at transition to adulthood, even if they did not display any tumor burden on initial MRI, and when the MRI was performed significantly under the age of 18. With this approach, tumors that may have developed between scans can be detected and patients at risk for complications can be identified.</p>\",\"PeriodicalId\":19651,\"journal\":{\"name\":\"Orphanet Journal of Rare Diseases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536773/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Orphanet Journal of Rare Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13023-024-03420-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Orphanet Journal of Rare Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13023-024-03420-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Whole-body MRI-based long-term evaluation of pediatric NF1 patients without initial tumor burden with evidence of newly developed peripheral nerve sheath tumors.
Background: Patients with neurofibromatosis type 1 (NF1) can develop plexiform neurofibromas (PN). Large tumor burden is a predictor for the development of malignant peripheral nerve sheath tumors. Whole-body magnetic resonance imaging (WB-MRI) is the recommended imaging method for the evaluation of PN. WB-MRI is recommended for NF1 patients at transition from adolescence to adulthood. In the absence of internal PN further follow-up WB-MRI is not considered necessary. PN are often detected in early childhood, leading to the assumption that they may be congenital lesions. It remains unclear whether this invariably applies to all patients or whether patients who initially displayed no tumors can still develop PN over time. Therefore, we retrospectively reviewed WB-MRI scans of pediatric patients with NF1 without initial tumor burden and compared these with long-term follow-up scans for presence of newly developed PN.
Methods: We retrospectively reviewed WB-MRI scans of 17 NF1-children (twelve male; median age at initial scan: 9 [IQR 6.1-11.9] years) who initially displayed no PN. MRI scans with a follow-up interval of at least 6 years (median follow-up interval: 9 [IQR 5.6-12.4] years) were reviewed in consensus by two radiologists regarding the development of new PN over time.
Results: New PN were identified in two out of 17 children without initial tumor burden in follow-up examinations. One of these two patients developed two larger distinct PN of 4.5 cm on the right upper arm and of 2.5 cm on the left thoracic wall between the age of ten and twelve. The second child developed multiple smaller PN along the major peripheral nerves between the age of eleven and 16. In addition, 15 of the children without initial tumor burden did not develop any distinct tumors for a period of at least 6 years.
Conclusion: Our results indicate that PN can be newly detected in pediatric patients over time, even if no PN were detected on initial MRI scans. Therefore, it seems reasonable to perform at least a second MRI in pediatric NF1 patients at transition to adulthood, even if they did not display any tumor burden on initial MRI, and when the MRI was performed significantly under the age of 18. With this approach, tumors that may have developed between scans can be detected and patients at risk for complications can be identified.
期刊介绍:
Orphanet Journal of Rare Diseases is an open access, peer-reviewed journal that encompasses all aspects of rare diseases and orphan drugs. The journal publishes high-quality reviews on specific rare diseases. In addition, the journal may consider articles on clinical trial outcome reports, either positive or negative, and articles on public health issues in the field of rare diseases and orphan drugs. The journal does not accept case reports.