拟南芥 E3 泛素连接酶 DOA10A 在 ABA 信号转导过程中通过单泛素化促进脱落酸(ABA)受体定位到膜上。

IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences
New Phytologist Pub Date : 2024-11-04 DOI:10.1111/nph.20224
Cuixia Liu, Qingliang Li, Zhengwei Shen, Ran Xia, Qian Chen, Xiao Li, Yanglin Ding, Shuhua Yang, Giovanna Serino, Qi Xie, Feifei Yu
{"title":"拟南芥 E3 泛素连接酶 DOA10A 在 ABA 信号转导过程中通过单泛素化促进脱落酸(ABA)受体定位到膜上。","authors":"Cuixia Liu, Qingliang Li, Zhengwei Shen, Ran Xia, Qian Chen, Xiao Li, Yanglin Ding, Shuhua Yang, Giovanna Serino, Qi Xie, Feifei Yu","doi":"10.1111/nph.20224","DOIUrl":null,"url":null,"abstract":"<p><p>The endoplasmic reticulum-associated degradation (ERAD) system eliminates misfolded and short-lived proteins to maintain physiological homeostasis in the cell. We have previously reported that ERAD is involved in salt tolerance in Arabidopsis. Given the central role of the phytohormone abscisic acid (ABA) in plant stress responses, we sought to identify potential intersections between the ABA and the ERAD pathways in plant stress response. By screening for the ABA response of a wide array of ERAD mutants, we isolated a gain-of-function mutant, doa10a-1, which conferred ABA hypersensitivity to seedlings. Genetic and biochemical assays showed that DOA10A is a functional E3 ubiquitin ligase which, by acting in concert with specific E2 enzymes, mediates mono-ubiquitination of the ABA receptor, followed by their relocalization to the plasma membrane. This in turn leads to enhanced ABA perception. In summary, we report here the identification of a novel RING-type E3 ligase, DOA10A, which regulates ABA perception by affecting the localization and the activity of ABA receptors through their mono-ubiquitination.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Arabidopsis E3 ubiquitin ligase DOA10A promotes localization of abscisic acid (ABA) receptors to the membrane through mono-ubiquitination in ABA signaling.\",\"authors\":\"Cuixia Liu, Qingliang Li, Zhengwei Shen, Ran Xia, Qian Chen, Xiao Li, Yanglin Ding, Shuhua Yang, Giovanna Serino, Qi Xie, Feifei Yu\",\"doi\":\"10.1111/nph.20224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The endoplasmic reticulum-associated degradation (ERAD) system eliminates misfolded and short-lived proteins to maintain physiological homeostasis in the cell. We have previously reported that ERAD is involved in salt tolerance in Arabidopsis. Given the central role of the phytohormone abscisic acid (ABA) in plant stress responses, we sought to identify potential intersections between the ABA and the ERAD pathways in plant stress response. By screening for the ABA response of a wide array of ERAD mutants, we isolated a gain-of-function mutant, doa10a-1, which conferred ABA hypersensitivity to seedlings. Genetic and biochemical assays showed that DOA10A is a functional E3 ubiquitin ligase which, by acting in concert with specific E2 enzymes, mediates mono-ubiquitination of the ABA receptor, followed by their relocalization to the plasma membrane. This in turn leads to enhanced ABA perception. In summary, we report here the identification of a novel RING-type E3 ligase, DOA10A, which regulates ABA perception by affecting the localization and the activity of ABA receptors through their mono-ubiquitination.</p>\",\"PeriodicalId\":48887,\"journal\":{\"name\":\"New Phytologist\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/nph.20224\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20224","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

内质网相关降解(ERAD)系统能消除折叠错误和寿命短的蛋白质,以维持细胞的生理平衡。我们以前曾报道过,ERAD 参与了拟南芥的耐盐性。鉴于植物激素脱落酸(ABA)在植物胁迫响应中的核心作用,我们试图找出 ABA 和 ERAD 途径在植物胁迫响应中的潜在交叉点。通过筛选一系列ERAD突变体的ABA反应,我们分离出了一个功能增益突变体doa10a-1,它能使幼苗对ABA过敏。遗传和生化分析表明,DOA10A 是一种功能性 E3 泛素连接酶,它与特定的 E2 酶协同作用,介导 ABA 受体的单泛素化,然后将其重新定位到质膜上。这反过来又会增强对 ABA 的感知。总之,我们在此报告发现了一种新型 RING 型 E3 连接酶 DOA10A,它通过单泛素化影响 ABA 受体的定位和活性来调节 ABA 感知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Arabidopsis E3 ubiquitin ligase DOA10A promotes localization of abscisic acid (ABA) receptors to the membrane through mono-ubiquitination in ABA signaling.

The endoplasmic reticulum-associated degradation (ERAD) system eliminates misfolded and short-lived proteins to maintain physiological homeostasis in the cell. We have previously reported that ERAD is involved in salt tolerance in Arabidopsis. Given the central role of the phytohormone abscisic acid (ABA) in plant stress responses, we sought to identify potential intersections between the ABA and the ERAD pathways in plant stress response. By screening for the ABA response of a wide array of ERAD mutants, we isolated a gain-of-function mutant, doa10a-1, which conferred ABA hypersensitivity to seedlings. Genetic and biochemical assays showed that DOA10A is a functional E3 ubiquitin ligase which, by acting in concert with specific E2 enzymes, mediates mono-ubiquitination of the ABA receptor, followed by their relocalization to the plasma membrane. This in turn leads to enhanced ABA perception. In summary, we report here the identification of a novel RING-type E3 ligase, DOA10A, which regulates ABA perception by affecting the localization and the activity of ABA receptors through their mono-ubiquitination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Phytologist
New Phytologist PLANT SCIENCES-
CiteScore
17.60
自引率
5.30%
发文量
728
审稿时长
1 months
期刊介绍: New Phytologist is a leading publication that showcases exceptional and groundbreaking research in plant science and its practical applications. With a focus on five distinct sections - Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology - the journal covers a wide array of topics ranging from cellular processes to the impact of global environmental changes. We encourage the use of interdisciplinary approaches, and our content is structured to reflect this. Our journal acknowledges the diverse techniques employed in plant science, including molecular and cell biology, functional genomics, modeling, and system-based approaches, across various subfields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信