双宽多频带 (DWMB) 四端口灵活多输入多输出天线,适用于包括高分集性能在内的多种体外无线应用。

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2024-11-04 eCollection Date: 2024-01-01 DOI:10.1371/journal.pone.0309690
Manish Sharma, Kanhaiya Sharma, Prabhakara Rao Kapula, Anand Nayyar, Muhammad Bilal
{"title":"双宽多频带 (DWMB) 四端口灵活多输入多输出天线,适用于包括高分集性能在内的多种体外无线应用。","authors":"Manish Sharma, Kanhaiya Sharma, Prabhakara Rao Kapula, Anand Nayyar, Muhammad Bilal","doi":"10.1371/journal.pone.0309690","DOIUrl":null,"url":null,"abstract":"<p><p>The single-input-single-output technology experiences loss of data in the communication channel due to the receiving antenna undergoing fading of the signal impinged on it. Today's need is faster data transfer with multiple applications in the single antenna with multiple-identical radiating elements, leading to multiple-input-multiple-outputDWMB (MIMODWMB) technology. The MIMODWMB configuration with multi-band capability is the objective of the proposed work with applications ranging between microwave-millimeterWave bands. The four-port Dual-Wide Multi-Band (DWMB) MIMODWMB antenna radiating electro-magnetic-energy is proposed, which generates measured bandwidths of 7.27GHz-34.32GHz (Band 1) and 46.54GHz-71.52GHz (Band 2) including applications Up-link/Down-link Satellite System, X-Band, Ku-Band, ISM 24.0GHz (24.0GHz-24.25GHz), 24.0GHz UWB Band (21.65GHz-26.65GHz), n258, n257/n261 and n263 V-band. The proposed antenna technology is printed on Rogers's low permittivity substrate with a hexagon patch etched with dual merged-elliptical slot and three identical circular slots to achieve high impedance matching for Band 1. The partial-ground is etched by a rectangular slot for better impedance matching, and two-thin-etched rectangular slits generate 60.0GHz Band 2. The thin substrate, thickness 0.254mm, is utilized for flexible applications without compromising the operation of dual wide bandwidths. The flexible antenna is also subjected to analysis of Specific-Absorption-Rate (SAR) analysis at key frequencies within both the bands and found to be within the standard limit of 1.60W/Kg for 1g of the human tissue model and corresponds to 1.01W/Kg at 10.0GHz, 0.280W/Kg at 15.0GHz, 0.475W/Kg at 26.0GHz, 0.588W/Kg at 28.0GHz & 0.301W/Kg at 60.0GHz. The high diversity performance with Envelope Correlation Coefficient<0.50, Diversity Gain≈10.0dB, Total Active Reflection Coefficent<0dB, Channel Capacity Loss<0.40b/s/Hz and multi-band capability for mobile users make the proposed work suitable for flexible on-body applications in a wireless environment. The proposed work MIMODWMB antenna offers advantages such as reduced size (20mm×24mm: 0.61λ0×0.74λ0 at λ0 = 7.27GHz) and a wide range of impedance bandwidths, which are useful for several applications. Also, due to the flexible nature of the design, they can be used for future on-body wearable applications.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534258/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dual-Wide Multi-Band (DWMB) four-port flexible MIMO antenna for on-body multiple wireless applications including high diversity performance.\",\"authors\":\"Manish Sharma, Kanhaiya Sharma, Prabhakara Rao Kapula, Anand Nayyar, Muhammad Bilal\",\"doi\":\"10.1371/journal.pone.0309690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The single-input-single-output technology experiences loss of data in the communication channel due to the receiving antenna undergoing fading of the signal impinged on it. Today's need is faster data transfer with multiple applications in the single antenna with multiple-identical radiating elements, leading to multiple-input-multiple-outputDWMB (MIMODWMB) technology. The MIMODWMB configuration with multi-band capability is the objective of the proposed work with applications ranging between microwave-millimeterWave bands. The four-port Dual-Wide Multi-Band (DWMB) MIMODWMB antenna radiating electro-magnetic-energy is proposed, which generates measured bandwidths of 7.27GHz-34.32GHz (Band 1) and 46.54GHz-71.52GHz (Band 2) including applications Up-link/Down-link Satellite System, X-Band, Ku-Band, ISM 24.0GHz (24.0GHz-24.25GHz), 24.0GHz UWB Band (21.65GHz-26.65GHz), n258, n257/n261 and n263 V-band. The proposed antenna technology is printed on Rogers's low permittivity substrate with a hexagon patch etched with dual merged-elliptical slot and three identical circular slots to achieve high impedance matching for Band 1. The partial-ground is etched by a rectangular slot for better impedance matching, and two-thin-etched rectangular slits generate 60.0GHz Band 2. The thin substrate, thickness 0.254mm, is utilized for flexible applications without compromising the operation of dual wide bandwidths. The flexible antenna is also subjected to analysis of Specific-Absorption-Rate (SAR) analysis at key frequencies within both the bands and found to be within the standard limit of 1.60W/Kg for 1g of the human tissue model and corresponds to 1.01W/Kg at 10.0GHz, 0.280W/Kg at 15.0GHz, 0.475W/Kg at 26.0GHz, 0.588W/Kg at 28.0GHz & 0.301W/Kg at 60.0GHz. The high diversity performance with Envelope Correlation Coefficient<0.50, Diversity Gain≈10.0dB, Total Active Reflection Coefficent<0dB, Channel Capacity Loss<0.40b/s/Hz and multi-band capability for mobile users make the proposed work suitable for flexible on-body applications in a wireless environment. The proposed work MIMODWMB antenna offers advantages such as reduced size (20mm×24mm: 0.61λ0×0.74λ0 at λ0 = 7.27GHz) and a wide range of impedance bandwidths, which are useful for several applications. Also, due to the flexible nature of the design, they can be used for future on-body wearable applications.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534258/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0309690\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0309690","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

单输入-单输出技术在通信信道中会出现数据丢失,原因是接收天线受到信号衰减的影响。如今的需求是在具有多个相同辐射元件的单天线上实现更快的数据传输和多种应用,这就导致了多输入多输出DWMB(MIMODWMB)技术的出现。具有多波段能力的 MIMODWMB 配置是拟议工作的目标,其应用范围包括微波-毫米波波段。所提出的四端口双宽多频带(DWMB)MIMODWMB 天线辐射电磁能量,可产生 7.27GHz-34.32GHz (频带 1)和 46.54GHz-71.52GHz (频带 2)的测量带宽,其中包括 46.54GHz-71.52GHz (频带 3)和 46.54GHz-71.52GHz (频带 4)。52GHz(频带 2),包括上行链路/下行链路卫星系统、X 波段、Ku 波段、ISM 24.0GHz(24.0GHz-24.25GHz)、24.0GHz UWB 波段(21.65GHz-26.65GHz)、n258、n257/n261 和 n263 V 波段的应用。拟议的天线技术是在罗杰斯公司的低介电常数基板上印刷的,六角形贴片蚀刻有双合并椭圆槽和三个相同的圆形槽,以实现频带 1 的高阻抗匹配。 部分接地蚀刻有矩形槽,以实现更好的阻抗匹配,两个薄蚀刻矩形缝隙产生 60.0GHz 频带 2。厚度为 0.254 毫米的薄基板可用于柔性应用,而不会影响双宽频带的运行。该柔性天线还在两个频段内的关键频率上进行了比吸收率(SAR)分析,结果表明,在 1g 人体组织模型下,SAR 值在 1.60W/Kg 的标准限制范围内,在 10.0GHz 时为 1.01W/Kg,在 15.0GHz 时为 0.280W/Kg,在 26.0GHz 时为 0.475W/Kg,在 28.0GHz 时为 0.588W/Kg,在 60.0GHz 时为 0.301W/Kg。高分集性能与包络相关系数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-Wide Multi-Band (DWMB) four-port flexible MIMO antenna for on-body multiple wireless applications including high diversity performance.

The single-input-single-output technology experiences loss of data in the communication channel due to the receiving antenna undergoing fading of the signal impinged on it. Today's need is faster data transfer with multiple applications in the single antenna with multiple-identical radiating elements, leading to multiple-input-multiple-outputDWMB (MIMODWMB) technology. The MIMODWMB configuration with multi-band capability is the objective of the proposed work with applications ranging between microwave-millimeterWave bands. The four-port Dual-Wide Multi-Band (DWMB) MIMODWMB antenna radiating electro-magnetic-energy is proposed, which generates measured bandwidths of 7.27GHz-34.32GHz (Band 1) and 46.54GHz-71.52GHz (Band 2) including applications Up-link/Down-link Satellite System, X-Band, Ku-Band, ISM 24.0GHz (24.0GHz-24.25GHz), 24.0GHz UWB Band (21.65GHz-26.65GHz), n258, n257/n261 and n263 V-band. The proposed antenna technology is printed on Rogers's low permittivity substrate with a hexagon patch etched with dual merged-elliptical slot and three identical circular slots to achieve high impedance matching for Band 1. The partial-ground is etched by a rectangular slot for better impedance matching, and two-thin-etched rectangular slits generate 60.0GHz Band 2. The thin substrate, thickness 0.254mm, is utilized for flexible applications without compromising the operation of dual wide bandwidths. The flexible antenna is also subjected to analysis of Specific-Absorption-Rate (SAR) analysis at key frequencies within both the bands and found to be within the standard limit of 1.60W/Kg for 1g of the human tissue model and corresponds to 1.01W/Kg at 10.0GHz, 0.280W/Kg at 15.0GHz, 0.475W/Kg at 26.0GHz, 0.588W/Kg at 28.0GHz & 0.301W/Kg at 60.0GHz. The high diversity performance with Envelope Correlation Coefficient<0.50, Diversity Gain≈10.0dB, Total Active Reflection Coefficent<0dB, Channel Capacity Loss<0.40b/s/Hz and multi-band capability for mobile users make the proposed work suitable for flexible on-body applications in a wireless environment. The proposed work MIMODWMB antenna offers advantages such as reduced size (20mm×24mm: 0.61λ0×0.74λ0 at λ0 = 7.27GHz) and a wide range of impedance bandwidths, which are useful for several applications. Also, due to the flexible nature of the design, they can be used for future on-body wearable applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信