通过 Phi-4 等式得出的新统计分布及其广泛应用。

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2024-11-04 eCollection Date: 2024-01-01 DOI:10.1371/journal.pone.0312458
Yousef F Alharbi, Ahmed M T Abd El-Bar, Mahmoud A E Abdelrahman, Ahmed M Gemeay
{"title":"通过 Phi-4 等式得出的新统计分布及其广泛应用。","authors":"Yousef F Alharbi, Ahmed M T Abd El-Bar, Mahmoud A E Abdelrahman, Ahmed M Gemeay","doi":"10.1371/journal.pone.0312458","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a new framework based on nonlinear partial differential equations and statistics. For the nonlinear Phi-4 equation, the probability density function of the hyperbolic secant (HS) distribution has been obtained. Our model's density has various shapes, including left-skewed, symmetric, and right-skewed. Eight distinct estimation approaches have been employed to estimate the parameters of our model. Additionally, the behavior of the HS model parameters was investigated using randomly generated data sets using these estimation techniques. Furthermore, we illustrate the applicability of the HS distribution for modeling real data by applying our results to real data. As a result, it is expected that our proposal will be of significant assistance to the community investigating new distributions based on hyperbolic functions and their applications to real-world data sets.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534224/pdf/","citationCount":"0","resultStr":"{\"title\":\"A new statistical distribution via the Phi-4 equation with its wide-ranging applications.\",\"authors\":\"Yousef F Alharbi, Ahmed M T Abd El-Bar, Mahmoud A E Abdelrahman, Ahmed M Gemeay\",\"doi\":\"10.1371/journal.pone.0312458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a new framework based on nonlinear partial differential equations and statistics. For the nonlinear Phi-4 equation, the probability density function of the hyperbolic secant (HS) distribution has been obtained. Our model's density has various shapes, including left-skewed, symmetric, and right-skewed. Eight distinct estimation approaches have been employed to estimate the parameters of our model. Additionally, the behavior of the HS model parameters was investigated using randomly generated data sets using these estimation techniques. Furthermore, we illustrate the applicability of the HS distribution for modeling real data by applying our results to real data. As a result, it is expected that our proposal will be of significant assistance to the community investigating new distributions based on hyperbolic functions and their applications to real-world data sets.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534224/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0312458\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0312458","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个基于非线性偏微分方程和统计学的新框架。对于非线性 Phi-4 方程,我们得到了双曲正割(HS)分布的概率密度函数。我们模型的密度有多种形状,包括左偏、对称和右偏。我们采用了八种不同的估算方法来估算模型参数。此外,我们还利用这些估计技术,使用随机生成的数据集对 HS 模型参数的行为进行了研究。此外,我们还将结果应用于真实数据,以此说明 HS 分布可用于真实数据建模。因此,预计我们的建议将对研究基于双曲函数的新分布及其在真实世界数据集中的应用的社区大有帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new statistical distribution via the Phi-4 equation with its wide-ranging applications.

This paper presents a new framework based on nonlinear partial differential equations and statistics. For the nonlinear Phi-4 equation, the probability density function of the hyperbolic secant (HS) distribution has been obtained. Our model's density has various shapes, including left-skewed, symmetric, and right-skewed. Eight distinct estimation approaches have been employed to estimate the parameters of our model. Additionally, the behavior of the HS model parameters was investigated using randomly generated data sets using these estimation techniques. Furthermore, we illustrate the applicability of the HS distribution for modeling real data by applying our results to real data. As a result, it is expected that our proposal will be of significant assistance to the community investigating new distributions based on hyperbolic functions and their applications to real-world data sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信