{"title":"使用 Mamba 架构彻底改变梨的自动采摘。","authors":"Peirui Zhao, Weiwei Cai, Wenhua Zhou, Na Li","doi":"10.1186/s13007-024-01287-z","DOIUrl":null,"url":null,"abstract":"<p><p>With the emergence of the new generation vision architecture Vmamba and the further demand for agricultural yield and efficiency, we propose an efficient and high-accuracy target detection network for automated pear picking tasks based on Vmamba, aiming to address the issue of low efficiency in current Transformer architectures. The proposed network, named SRSMamba, employs a Reward and Punishment Mechanism (RPM) to focus on important information while minimizing redundancy interference. It utilizes 3D Selective Scan (SS3D) to extend scanning dimensions and integrates global information across channel dimensions, thereby enhancing the model's robustness in complex agricultural environments and effectively adapting to the extraction of complex features in pear orchards and farmlands. Additionally, a Stacked Feature Pyramid Network (SFPN) is introduced to enhance semantic information during the feature fusion stage, particularly improving the detection capability for small targets. Experimental results show that SRSMamba has a low parameter count of 21.1 M, GFLOPs of 50.4, mAP of 72.0%, mAP50 reaching 94.8%, mAP75 at 68.1%, and FPS at 26.9. Compared with other state-of-the-art (SOTA) object detection methods, it achieves a good trade-off between model efficiency and detection accuracy.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"167"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536875/pdf/","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing automated pear picking using Mamba architecture.\",\"authors\":\"Peirui Zhao, Weiwei Cai, Wenhua Zhou, Na Li\",\"doi\":\"10.1186/s13007-024-01287-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the emergence of the new generation vision architecture Vmamba and the further demand for agricultural yield and efficiency, we propose an efficient and high-accuracy target detection network for automated pear picking tasks based on Vmamba, aiming to address the issue of low efficiency in current Transformer architectures. The proposed network, named SRSMamba, employs a Reward and Punishment Mechanism (RPM) to focus on important information while minimizing redundancy interference. It utilizes 3D Selective Scan (SS3D) to extend scanning dimensions and integrates global information across channel dimensions, thereby enhancing the model's robustness in complex agricultural environments and effectively adapting to the extraction of complex features in pear orchards and farmlands. Additionally, a Stacked Feature Pyramid Network (SFPN) is introduced to enhance semantic information during the feature fusion stage, particularly improving the detection capability for small targets. Experimental results show that SRSMamba has a low parameter count of 21.1 M, GFLOPs of 50.4, mAP of 72.0%, mAP50 reaching 94.8%, mAP75 at 68.1%, and FPS at 26.9. Compared with other state-of-the-art (SOTA) object detection methods, it achieves a good trade-off between model efficiency and detection accuracy.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"20 1\",\"pages\":\"167\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536875/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-024-01287-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01287-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Revolutionizing automated pear picking using Mamba architecture.
With the emergence of the new generation vision architecture Vmamba and the further demand for agricultural yield and efficiency, we propose an efficient and high-accuracy target detection network for automated pear picking tasks based on Vmamba, aiming to address the issue of low efficiency in current Transformer architectures. The proposed network, named SRSMamba, employs a Reward and Punishment Mechanism (RPM) to focus on important information while minimizing redundancy interference. It utilizes 3D Selective Scan (SS3D) to extend scanning dimensions and integrates global information across channel dimensions, thereby enhancing the model's robustness in complex agricultural environments and effectively adapting to the extraction of complex features in pear orchards and farmlands. Additionally, a Stacked Feature Pyramid Network (SFPN) is introduced to enhance semantic information during the feature fusion stage, particularly improving the detection capability for small targets. Experimental results show that SRSMamba has a low parameter count of 21.1 M, GFLOPs of 50.4, mAP of 72.0%, mAP50 reaching 94.8%, mAP75 at 68.1%, and FPS at 26.9. Compared with other state-of-the-art (SOTA) object detection methods, it achieves a good trade-off between model efficiency and detection accuracy.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.