Antun Lovro Brkić, Antonio Supina, Davor Čapeta, Lucija Dončević, Lucija Ptiček, Šimun Mandić, Livio Racané, Ida Delač
{"title":"CVD 合成单层 MoS2 有机分子修饰的稳定性和可逆性。","authors":"Antun Lovro Brkić, Antonio Supina, Davor Čapeta, Lucija Dončević, Lucija Ptiček, Šimun Mandić, Livio Racané, Ida Delač","doi":"10.1088/1361-6528/ad8e6c","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the stability of monolayer MoS<sub>2</sub>samples synthesized using chemical vapor deposition (CVD) and subsequently modified with organic molecules under ambient conditions. By analyzing the optical signatures of the samples using photoluminescence spectroscopy (PL), Raman spectroscopy, and surface quality using atomic force microscopy (AFM), we observed that this modification of monolayer MoS<sub>2</sub>with organic molecules is stable and retains its optical signature over time under ambient conditions. Furthermore, we show the reversibility of the effects induced by the organic molecules, as heating the modified samples restores their original optical signatures, indicating the re-establishment of the optical properties of the pristine monolayer MoS<sub>2</sub>.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and reversibility of organic molecule modifications of CVD-synthesized monolayer MoS<sub>2</sub>.\",\"authors\":\"Antun Lovro Brkić, Antonio Supina, Davor Čapeta, Lucija Dončević, Lucija Ptiček, Šimun Mandić, Livio Racané, Ida Delač\",\"doi\":\"10.1088/1361-6528/ad8e6c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated the stability of monolayer MoS<sub>2</sub>samples synthesized using chemical vapor deposition (CVD) and subsequently modified with organic molecules under ambient conditions. By analyzing the optical signatures of the samples using photoluminescence spectroscopy (PL), Raman spectroscopy, and surface quality using atomic force microscopy (AFM), we observed that this modification of monolayer MoS<sub>2</sub>with organic molecules is stable and retains its optical signature over time under ambient conditions. Furthermore, we show the reversibility of the effects induced by the organic molecules, as heating the modified samples restores their original optical signatures, indicating the re-establishment of the optical properties of the pristine monolayer MoS<sub>2</sub>.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad8e6c\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad8e6c","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Stability and reversibility of organic molecule modifications of CVD-synthesized monolayer MoS2.
We investigated the stability of monolayer MoS2samples synthesized using chemical vapor deposition (CVD) and subsequently modified with organic molecules under ambient conditions. By analyzing the optical signatures of the samples using photoluminescence spectroscopy (PL), Raman spectroscopy, and surface quality using atomic force microscopy (AFM), we observed that this modification of monolayer MoS2with organic molecules is stable and retains its optical signature over time under ambient conditions. Furthermore, we show the reversibility of the effects induced by the organic molecules, as heating the modified samples restores their original optical signatures, indicating the re-establishment of the optical properties of the pristine monolayer MoS2.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.