Sophie Sanchez, Armand de Ricqlès, Jasper Ponstein, Paul Tafforeau, Louise Zylberberg
{"title":"南极龙(Antarctopelta oliveroi)(恐龙亚目,踝龙科)真皮骨小梁的显微结构和发育:通过三维X射线显微层析成像破解复杂的形态发生系统","authors":"Sophie Sanchez, Armand de Ricqlès, Jasper Ponstein, Paul Tafforeau, Louise Zylberberg","doi":"10.1111/joa.14159","DOIUrl":null,"url":null,"abstract":"<p><p>Ankylosaurs were a group of heavily armored non-avian dinosaurs (Dinosauria, Ankylosauria), represented by a relatively abundant fossil record from the Cretaceous of North and South America. Their dermal skeleton was characterized by large osteoderms whose development and functional role have been largely investigated. However, interstitial small ossicles, forming between these osteoderms, have been far more overlooked and it remains unknown whether they were formed through the ossification of a preexisting fibrous matrix of connective tissue (i.e., metaplasia) or by a cell-induced differentiation of new fiber bundles followed by mineralization (i.e., neoplasia sensu (Zeitschrift für Wissenschaftliche Zoologie, 1858, 9, 147)). Here, we propose a hypothesis on the developmental origin of these small ossicles in the ankylosaurian Antarctopelta oliveroi using light microcopy, scanning electron microscopy and three-dimensional virtual histology through propagation phase-contrast synchrotron radiation micro-computed tomography (PPC-SRμCT). Ossicles are located in the dermis. They are composed of two layers: (1) a thin external layer, and (2) a thick basal plate, composed of collagen fiber bundles, which forms the main part of the ossicle. The external layer is made of a smooth, vitreous mineralized tissue that does not look like bone. The basal plate, however, is of osseous origin. In this basal plate, the collagen fiber bundles are organized in two orthogonal systems: one horizontal-observable in cross-sections-and one vertical-observable in the primary plane of sections sensu (Journal of Vertebrate Paleontology, 2004, 24, 874). The horizontal system is itself composed of successive layers of collagen fiber bundles arranged into an orthogonal plywood-like structure. The bundles of the vertical system radiate from the center of the ossicle at the level of the transition between the external layer and the basal plate and run towards the periphery of the basal plate. Their thickness increases from the center of the ossicle towards its periphery. Numerous bundles of the vertical system form thin threads that interweave and penetrate within the thick bundles of the horizontal system. Our new data suggest that the ossicles were at least partially formed by metaplasia, that is, through the ossification of a preexisting fibrous matrix of connective tissue. This process was probably supplemented by a cell-induced differentiation of new fiber bundles laid down prior to their incorporation into the fibrous system and its mineralization. This process looks more akin to neoplasia sensu (Zeitschrift für Wissenschaftliche Zoologie, 1858, 9, 147) than to metaplasia. Consequently, metaplastic and neoplastic processes may coexist in these ossicles with a possible differential expression during ontogeny.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and development of the dermal ossicles of Antarctopelta oliveroi (Dinosauria, Ankylosauria): A complex morphogenetic system deciphered through three-dimensional X-ray microtomography.\",\"authors\":\"Sophie Sanchez, Armand de Ricqlès, Jasper Ponstein, Paul Tafforeau, Louise Zylberberg\",\"doi\":\"10.1111/joa.14159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ankylosaurs were a group of heavily armored non-avian dinosaurs (Dinosauria, Ankylosauria), represented by a relatively abundant fossil record from the Cretaceous of North and South America. Their dermal skeleton was characterized by large osteoderms whose development and functional role have been largely investigated. However, interstitial small ossicles, forming between these osteoderms, have been far more overlooked and it remains unknown whether they were formed through the ossification of a preexisting fibrous matrix of connective tissue (i.e., metaplasia) or by a cell-induced differentiation of new fiber bundles followed by mineralization (i.e., neoplasia sensu (Zeitschrift für Wissenschaftliche Zoologie, 1858, 9, 147)). Here, we propose a hypothesis on the developmental origin of these small ossicles in the ankylosaurian Antarctopelta oliveroi using light microcopy, scanning electron microscopy and three-dimensional virtual histology through propagation phase-contrast synchrotron radiation micro-computed tomography (PPC-SRμCT). Ossicles are located in the dermis. They are composed of two layers: (1) a thin external layer, and (2) a thick basal plate, composed of collagen fiber bundles, which forms the main part of the ossicle. The external layer is made of a smooth, vitreous mineralized tissue that does not look like bone. The basal plate, however, is of osseous origin. In this basal plate, the collagen fiber bundles are organized in two orthogonal systems: one horizontal-observable in cross-sections-and one vertical-observable in the primary plane of sections sensu (Journal of Vertebrate Paleontology, 2004, 24, 874). The horizontal system is itself composed of successive layers of collagen fiber bundles arranged into an orthogonal plywood-like structure. The bundles of the vertical system radiate from the center of the ossicle at the level of the transition between the external layer and the basal plate and run towards the periphery of the basal plate. Their thickness increases from the center of the ossicle towards its periphery. Numerous bundles of the vertical system form thin threads that interweave and penetrate within the thick bundles of the horizontal system. Our new data suggest that the ossicles were at least partially formed by metaplasia, that is, through the ossification of a preexisting fibrous matrix of connective tissue. This process was probably supplemented by a cell-induced differentiation of new fiber bundles laid down prior to their incorporation into the fibrous system and its mineralization. This process looks more akin to neoplasia sensu (Zeitschrift für Wissenschaftliche Zoologie, 1858, 9, 147) than to metaplasia. Consequently, metaplastic and neoplastic processes may coexist in these ossicles with a possible differential expression during ontogeny.</p>\",\"PeriodicalId\":14971,\"journal\":{\"name\":\"Journal of Anatomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Anatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/joa.14159\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14159","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
踝龙是一类重甲非鸟类恐龙(恐龙科,踝龙属),在南北美洲白垩纪有相对丰富的化石记录。它们的真皮骨架以大型骨膜为特征,对骨膜的发育和功能作用已进行了大量研究。然而,在这些骨膜之间形成的间隙性小骨膜却被忽略了,它们是通过结缔组织原有纤维基质的骨化(即移行作用)形成的,还是通过细胞诱导的新纤维束分化后矿化形成的(即新生作用(Zeitschrift für Wissenschaftliche Zoologie, 1858, 9, 147)),至今仍不得而知。在这里,我们利用光显微镜、扫描电子显微镜和三维虚拟组织学(通过传播相位对比同步辐射显微计算机断层扫描(PPC-SRμCT)),对踝龙类南极栉水母(Antarctopelta oliveroi)中这些小听小骨的发育起源提出了一个假设。听小骨位于真皮层。它们由两层组成:(1) 薄的外层;(2) 由胶原纤维束组成的厚基板,基板是听小骨的主要部分。外层由光滑的玻璃质矿化组织构成,看起来不像骨头。然而,基底板却来源于骨。在这个基板中,胶原纤维束组织成两个正交系统:一个是水平系统--可在横截面上观察到;另一个是垂直系统--可在切片的主平面上观察到(《古脊椎动物学杂志》,2004 年,24 期,874 页)。水平系统本身由连续的胶原纤维束层组成,排列成正交的胶合木状结构。垂直系统的纤维束从位于外层和基底板过渡处的听小骨中心向基底板外围辐射。它们的厚度从听小骨中心向外围增加。垂直系统的许多束形成细线,这些细线交织在一起并穿透水平系统的粗束。我们的新数据表明,听小骨至少有一部分是通过移行作用形成的,即通过原有结缔组织纤维基质的骨化形成的。在这一过程中,可能还辅以细胞诱导的新纤维束分化,然后再将其纳入纤维系统并使其矿化。这一过程看起来更类似于新陈代谢(Zeitschrift für Wissenschaftliche Zoologie, 1858, 9, 147),而不是移行作用。因此,在这些骨小梁中可能同时存在新生和蜕变过程,在本体发育过程中可能会有不同的表现形式。
Microstructure and development of the dermal ossicles of Antarctopelta oliveroi (Dinosauria, Ankylosauria): A complex morphogenetic system deciphered through three-dimensional X-ray microtomography.
Ankylosaurs were a group of heavily armored non-avian dinosaurs (Dinosauria, Ankylosauria), represented by a relatively abundant fossil record from the Cretaceous of North and South America. Their dermal skeleton was characterized by large osteoderms whose development and functional role have been largely investigated. However, interstitial small ossicles, forming between these osteoderms, have been far more overlooked and it remains unknown whether they were formed through the ossification of a preexisting fibrous matrix of connective tissue (i.e., metaplasia) or by a cell-induced differentiation of new fiber bundles followed by mineralization (i.e., neoplasia sensu (Zeitschrift für Wissenschaftliche Zoologie, 1858, 9, 147)). Here, we propose a hypothesis on the developmental origin of these small ossicles in the ankylosaurian Antarctopelta oliveroi using light microcopy, scanning electron microscopy and three-dimensional virtual histology through propagation phase-contrast synchrotron radiation micro-computed tomography (PPC-SRμCT). Ossicles are located in the dermis. They are composed of two layers: (1) a thin external layer, and (2) a thick basal plate, composed of collagen fiber bundles, which forms the main part of the ossicle. The external layer is made of a smooth, vitreous mineralized tissue that does not look like bone. The basal plate, however, is of osseous origin. In this basal plate, the collagen fiber bundles are organized in two orthogonal systems: one horizontal-observable in cross-sections-and one vertical-observable in the primary plane of sections sensu (Journal of Vertebrate Paleontology, 2004, 24, 874). The horizontal system is itself composed of successive layers of collagen fiber bundles arranged into an orthogonal plywood-like structure. The bundles of the vertical system radiate from the center of the ossicle at the level of the transition between the external layer and the basal plate and run towards the periphery of the basal plate. Their thickness increases from the center of the ossicle towards its periphery. Numerous bundles of the vertical system form thin threads that interweave and penetrate within the thick bundles of the horizontal system. Our new data suggest that the ossicles were at least partially formed by metaplasia, that is, through the ossification of a preexisting fibrous matrix of connective tissue. This process was probably supplemented by a cell-induced differentiation of new fiber bundles laid down prior to their incorporation into the fibrous system and its mineralization. This process looks more akin to neoplasia sensu (Zeitschrift für Wissenschaftliche Zoologie, 1858, 9, 147) than to metaplasia. Consequently, metaplastic and neoplastic processes may coexist in these ossicles with a possible differential expression during ontogeny.
期刊介绍:
Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system.
Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract.
We particularly welcome submissions in the following areas:
Cell biology and tissue architecture
Comparative functional morphology
Developmental biology
Evolutionary developmental biology
Evolutionary morphology
Functional human anatomy
Integrative vertebrate paleontology
Methodological innovations in anatomical research
Musculoskeletal system
Neuroanatomy and neurodegeneration
Significant advances in anatomical education.