Roxanne Bérubé, Brooklynn Murray, Thomas A Kocarek, Katherine Gurdziel, Christopher D Kassotis
{"title":"壬基酚和十六烷基酚聚氧乙烯醚会干扰甲状腺激素受体信号传递,从而破坏代谢健康。","authors":"Roxanne Bérubé, Brooklynn Murray, Thomas A Kocarek, Katherine Gurdziel, Christopher D Kassotis","doi":"10.1210/endocr/bqae149","DOIUrl":null,"url":null,"abstract":"<p><p>Surfactants are molecules with both hydrophobic and hydrophilic structural groups that adsorb at the air-water or oil-water interface and serve to decrease the surface tension. Surfactants combine to form micelles that surround and break down or remove oils, making them ideal for detergents and cleaners. Two of the most important classes of nonionic surfactants are alkylphenol ethoxylates (APEOs) and alcohol ethoxylates (AEOs). APEOs and AEOs are high production-volume chemicals that are used for many industrial and residential purposes, including laundry detergents, hard-surface cleaners, paints, and pesticide adjuvants. Commensurate with better appreciation of the toxicity of APEOs and the base alkylphenols, use of AEOs has increased, and both sets of compounds are now ubiquitous environmental contaminants. We recently demonstrated that diverse APEOs and AEOs induce triglyceride accumulation and/or preadipocyte proliferation in vitro. Both sets of contaminants have also been demonstrated as obesogenic and metabolism-disrupting in a developmental exposure zebrafish model. While these metabolic health effects are consistent across models and species, the mechanisms underlying these effects are less clear. This study sought to evaluate causal mechanisms through reporter gene assays, relative binding affinity assays, coexposure experiments, and use of both human cell and zebrafish models. We report that antagonism of thyroid hormone receptor signaling appears to mediate at least a portion of the polyethoxylate-induced metabolic health effects. These results suggest further evaluation is needed, given the ubiquitous environmental presence of these thyroid-disrupting contaminants and reproducible effects in human cell models and vertebrate animals.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574291/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nonylphenol and Cetyl Alcohol Polyethoxylates Disrupt Thyroid Hormone Receptor Signaling to Disrupt Metabolic Health.\",\"authors\":\"Roxanne Bérubé, Brooklynn Murray, Thomas A Kocarek, Katherine Gurdziel, Christopher D Kassotis\",\"doi\":\"10.1210/endocr/bqae149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surfactants are molecules with both hydrophobic and hydrophilic structural groups that adsorb at the air-water or oil-water interface and serve to decrease the surface tension. Surfactants combine to form micelles that surround and break down or remove oils, making them ideal for detergents and cleaners. Two of the most important classes of nonionic surfactants are alkylphenol ethoxylates (APEOs) and alcohol ethoxylates (AEOs). APEOs and AEOs are high production-volume chemicals that are used for many industrial and residential purposes, including laundry detergents, hard-surface cleaners, paints, and pesticide adjuvants. Commensurate with better appreciation of the toxicity of APEOs and the base alkylphenols, use of AEOs has increased, and both sets of compounds are now ubiquitous environmental contaminants. We recently demonstrated that diverse APEOs and AEOs induce triglyceride accumulation and/or preadipocyte proliferation in vitro. Both sets of contaminants have also been demonstrated as obesogenic and metabolism-disrupting in a developmental exposure zebrafish model. While these metabolic health effects are consistent across models and species, the mechanisms underlying these effects are less clear. This study sought to evaluate causal mechanisms through reporter gene assays, relative binding affinity assays, coexposure experiments, and use of both human cell and zebrafish models. We report that antagonism of thyroid hormone receptor signaling appears to mediate at least a portion of the polyethoxylate-induced metabolic health effects. These results suggest further evaluation is needed, given the ubiquitous environmental presence of these thyroid-disrupting contaminants and reproducible effects in human cell models and vertebrate animals.</p>\",\"PeriodicalId\":11819,\"journal\":{\"name\":\"Endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574291/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1210/endocr/bqae149\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqae149","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Nonylphenol and Cetyl Alcohol Polyethoxylates Disrupt Thyroid Hormone Receptor Signaling to Disrupt Metabolic Health.
Surfactants are molecules with both hydrophobic and hydrophilic structural groups that adsorb at the air-water or oil-water interface and serve to decrease the surface tension. Surfactants combine to form micelles that surround and break down or remove oils, making them ideal for detergents and cleaners. Two of the most important classes of nonionic surfactants are alkylphenol ethoxylates (APEOs) and alcohol ethoxylates (AEOs). APEOs and AEOs are high production-volume chemicals that are used for many industrial and residential purposes, including laundry detergents, hard-surface cleaners, paints, and pesticide adjuvants. Commensurate with better appreciation of the toxicity of APEOs and the base alkylphenols, use of AEOs has increased, and both sets of compounds are now ubiquitous environmental contaminants. We recently demonstrated that diverse APEOs and AEOs induce triglyceride accumulation and/or preadipocyte proliferation in vitro. Both sets of contaminants have also been demonstrated as obesogenic and metabolism-disrupting in a developmental exposure zebrafish model. While these metabolic health effects are consistent across models and species, the mechanisms underlying these effects are less clear. This study sought to evaluate causal mechanisms through reporter gene assays, relative binding affinity assays, coexposure experiments, and use of both human cell and zebrafish models. We report that antagonism of thyroid hormone receptor signaling appears to mediate at least a portion of the polyethoxylate-induced metabolic health effects. These results suggest further evaluation is needed, given the ubiquitous environmental presence of these thyroid-disrupting contaminants and reproducible effects in human cell models and vertebrate animals.
期刊介绍:
The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.