在 300 °C 下通过原子层沉积在 Ru 上直接生长铁电正交菱形 ZrO2。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Myeongchan Ko, Ji Su Park, Soyun Joo, Seungbum Hong, Jong Min Yuk, Kyung Min Kim
{"title":"在 300 °C 下通过原子层沉积在 Ru 上直接生长铁电正交菱形 ZrO2。","authors":"Myeongchan Ko, Ji Su Park, Soyun Joo, Seungbum Hong, Jong Min Yuk, Kyung Min Kim","doi":"10.1039/d4mh01119h","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorite-structured binary oxide ferroelectrics exhibit robust ferroelectricity at a thickness below 10 nm, making them highly scalable and applicable for high-end semiconductor devices. Despite this promising prospect, achieving highly reliable ferroelectrics still demands a significant thermal budget to form a ferroelectric phase, being a hurdle for their use in high-end complementary metal oxide semiconductor (CMOS) processing. Here, we report a robust ferroelectric behavior of an 8 nm-thick ZrO<sub>2</sub> film deposited <i>via</i> plasma-enhanced atomic layer deposition at 300 °C on a (002)-oriented Ru without any post-annealing process, demonstrating high compatibility with CMOS processing. We propose that a plausible mechanism for this is the local domain matching epitaxy based on the high-resolution transmission electron microscopy and piezoelectric force microscopy results, where the templating effect between [101]-oriented grains of orthorhombic ZrO<sub>2</sub> and [010]-oriented grains of Ru enables the direct growth of ferroelectric ZrO<sub>2</sub>. The 2<i>P</i><sub>r</sub> value is 20 μC cm<sup>-2</sup>, and it can be further improved by post-annealing at 400 °C to 23 μC cm<sup>-2</sup> without showing the wake-up behavior. Ferroelectric switching shows stable endurance for up to 10<sup>9</sup> cycles, showcasing its high potential in CMOS-compatible applications and nanoelectronics with a low thermal budget.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct growth of ferroelectric orthorhombic ZrO<sub>2</sub> on Ru by atomic layer deposition at 300 °C.\",\"authors\":\"Myeongchan Ko, Ji Su Park, Soyun Joo, Seungbum Hong, Jong Min Yuk, Kyung Min Kim\",\"doi\":\"10.1039/d4mh01119h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluorite-structured binary oxide ferroelectrics exhibit robust ferroelectricity at a thickness below 10 nm, making them highly scalable and applicable for high-end semiconductor devices. Despite this promising prospect, achieving highly reliable ferroelectrics still demands a significant thermal budget to form a ferroelectric phase, being a hurdle for their use in high-end complementary metal oxide semiconductor (CMOS) processing. Here, we report a robust ferroelectric behavior of an 8 nm-thick ZrO<sub>2</sub> film deposited <i>via</i> plasma-enhanced atomic layer deposition at 300 °C on a (002)-oriented Ru without any post-annealing process, demonstrating high compatibility with CMOS processing. We propose that a plausible mechanism for this is the local domain matching epitaxy based on the high-resolution transmission electron microscopy and piezoelectric force microscopy results, where the templating effect between [101]-oriented grains of orthorhombic ZrO<sub>2</sub> and [010]-oriented grains of Ru enables the direct growth of ferroelectric ZrO<sub>2</sub>. The 2<i>P</i><sub>r</sub> value is 20 μC cm<sup>-2</sup>, and it can be further improved by post-annealing at 400 °C to 23 μC cm<sup>-2</sup> without showing the wake-up behavior. Ferroelectric switching shows stable endurance for up to 10<sup>9</sup> cycles, showcasing its high potential in CMOS-compatible applications and nanoelectronics with a low thermal budget.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01119h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01119h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

萤石结构的二元氧化物铁电体在厚度低于 10 纳米时表现出强大的铁电性,使其具有高度可扩展性,可用于高端半导体器件。尽管前景广阔,但实现高度可靠的铁电仍需要大量的热预算才能形成铁电相,这也是它们在高端互补金属氧化物半导体(CMOS)加工中使用的一个障碍。在这里,我们报告了通过等离子体增强原子层沉积技术在 300 °C 温度下在取向 (002) Ru 上沉积的 8 nm 厚 ZrO2 薄膜的稳健铁电行为,无需任何后退火工艺,证明了与 CMOS 加工的高度兼容性。根据高分辨率透射电子显微镜和压电显微镜的结果,我们认为其合理机制是局部畴匹配外延,即正交 ZrO2 的[101]取向晶粒和 Ru 的[010]取向晶粒之间的模板效应使铁电 ZrO2 得以直接生长。2Pr 值为 20 μC cm-2,在 400 °C 下退火后可进一步提高到 23 μC cm-2,且不会出现唤醒行为。铁电开关显示出高达 109 个周期的稳定耐久性,展示了其在 CMOS 兼容应用和低热预算纳米电子器件中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct growth of ferroelectric orthorhombic ZrO2 on Ru by atomic layer deposition at 300 °C.

Fluorite-structured binary oxide ferroelectrics exhibit robust ferroelectricity at a thickness below 10 nm, making them highly scalable and applicable for high-end semiconductor devices. Despite this promising prospect, achieving highly reliable ferroelectrics still demands a significant thermal budget to form a ferroelectric phase, being a hurdle for their use in high-end complementary metal oxide semiconductor (CMOS) processing. Here, we report a robust ferroelectric behavior of an 8 nm-thick ZrO2 film deposited via plasma-enhanced atomic layer deposition at 300 °C on a (002)-oriented Ru without any post-annealing process, demonstrating high compatibility with CMOS processing. We propose that a plausible mechanism for this is the local domain matching epitaxy based on the high-resolution transmission electron microscopy and piezoelectric force microscopy results, where the templating effect between [101]-oriented grains of orthorhombic ZrO2 and [010]-oriented grains of Ru enables the direct growth of ferroelectric ZrO2. The 2Pr value is 20 μC cm-2, and it can be further improved by post-annealing at 400 °C to 23 μC cm-2 without showing the wake-up behavior. Ferroelectric switching shows stable endurance for up to 109 cycles, showcasing its high potential in CMOS-compatible applications and nanoelectronics with a low thermal budget.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信