利用集成 ID-BOA-SVM 快速评估种子抗旱性的方法。

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Qiaohan Wu, Xiaoyu Zhao, Biqing Zhou, Jiangcheng Liao, Qian Luo, Yue Zhao, Lijing Cai, Zhe Zhai, Liang Tong
{"title":"利用集成 ID-BOA-SVM 快速评估种子抗旱性的方法。","authors":"Qiaohan Wu, Xiaoyu Zhao, Biqing Zhou, Jiangcheng Liao, Qian Luo, Yue Zhao, Lijing Cai, Zhe Zhai, Liang Tong","doi":"10.1039/d4ay01455c","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the application of near-infrared spectroscopy (NIR) for assessing drought resistance in seeds, aiming to offer a rapid and efficient method suitable for large-scale primary screening. NIR spectroscopy is utilized to analyze four key factors (water, sugars, amino acids content, and genes) associated with maize seed drought responses. Signature NIR bands indicative of drought resistance-related molecules are identified using the Competitive Adaptive Reweighted Sampling (CARS) technique. Furthermore, an Improved Discrete Bayesian Optimization Support Vector Machine (ID-BOA-SVM) classification model is developed to address issues related to sparse features in traditional Bayesian Optimization Support Vector Machines (BOA-SVM). To enhance classification performance, a stacking model integrating Random Forest (RF), ID-BOA-SVM, Logistic Regression (LR), and Gradient Boosted Decision Trees (GBDT) classifiers is constructed, ensuring robustness and minimizing overfitting risks. The model achieves satisfactory recognition accuracy (94.28% accuracy, 94% precision, 94.61% recall, and 94.23% F1-score) even under conditions of substantial interference and dataset variability. This research demonstrates that NIR spectroscopy-derived data can support genetic and physiological studies of drought-resistant seed varieties, facilitating a deeper understanding of drought resistance mechanisms and optimizing breeding strategies.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A rapid method for assessing seed drought resistance using integrated ID-BOA-SVM.\",\"authors\":\"Qiaohan Wu, Xiaoyu Zhao, Biqing Zhou, Jiangcheng Liao, Qian Luo, Yue Zhao, Lijing Cai, Zhe Zhai, Liang Tong\",\"doi\":\"10.1039/d4ay01455c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the application of near-infrared spectroscopy (NIR) for assessing drought resistance in seeds, aiming to offer a rapid and efficient method suitable for large-scale primary screening. NIR spectroscopy is utilized to analyze four key factors (water, sugars, amino acids content, and genes) associated with maize seed drought responses. Signature NIR bands indicative of drought resistance-related molecules are identified using the Competitive Adaptive Reweighted Sampling (CARS) technique. Furthermore, an Improved Discrete Bayesian Optimization Support Vector Machine (ID-BOA-SVM) classification model is developed to address issues related to sparse features in traditional Bayesian Optimization Support Vector Machines (BOA-SVM). To enhance classification performance, a stacking model integrating Random Forest (RF), ID-BOA-SVM, Logistic Regression (LR), and Gradient Boosted Decision Trees (GBDT) classifiers is constructed, ensuring robustness and minimizing overfitting risks. The model achieves satisfactory recognition accuracy (94.28% accuracy, 94% precision, 94.61% recall, and 94.23% F1-score) even under conditions of substantial interference and dataset variability. This research demonstrates that NIR spectroscopy-derived data can support genetic and physiological studies of drought-resistant seed varieties, facilitating a deeper understanding of drought resistance mechanisms and optimizing breeding strategies.</p>\",\"PeriodicalId\":64,\"journal\":{\"name\":\"Analytical Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Methods\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ay01455c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ay01455c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了近红外光谱(NIR)在评估种子抗旱性中的应用,旨在提供一种适用于大规模初筛的快速高效的方法。利用近红外光谱分析与玉米种子抗旱性相关的四个关键因素(水分、糖、氨基酸含量和基因)。利用竞争性自适应重加权采样(CARS)技术识别了表明抗旱性相关分子的特征性近红外波段。此外,还开发了一种改进的离散贝叶斯优化支持向量机(ID-BOA-SVM)分类模型,以解决传统贝叶斯优化支持向量机(BOA-SVM)中与稀疏特征相关的问题。为了提高分类性能,构建了一个集成了随机森林 (RF)、ID-BOA-SVM、逻辑回归 (LR) 和梯度提升决策树 (GBDT) 分类器的堆叠模型,以确保稳健性并将过拟合风险降至最低。即使在干扰和数据集变化较大的情况下,该模型也能达到令人满意的识别准确率(准确率 94.28%、精确率 94%、召回率 94.61% 和 F1 分数 94.23%)。这项研究表明,近红外光谱数据可支持抗旱种子品种的遗传和生理研究,有助于深入了解抗旱机制和优化育种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A rapid method for assessing seed drought resistance using integrated ID-BOA-SVM.

This study investigates the application of near-infrared spectroscopy (NIR) for assessing drought resistance in seeds, aiming to offer a rapid and efficient method suitable for large-scale primary screening. NIR spectroscopy is utilized to analyze four key factors (water, sugars, amino acids content, and genes) associated with maize seed drought responses. Signature NIR bands indicative of drought resistance-related molecules are identified using the Competitive Adaptive Reweighted Sampling (CARS) technique. Furthermore, an Improved Discrete Bayesian Optimization Support Vector Machine (ID-BOA-SVM) classification model is developed to address issues related to sparse features in traditional Bayesian Optimization Support Vector Machines (BOA-SVM). To enhance classification performance, a stacking model integrating Random Forest (RF), ID-BOA-SVM, Logistic Regression (LR), and Gradient Boosted Decision Trees (GBDT) classifiers is constructed, ensuring robustness and minimizing overfitting risks. The model achieves satisfactory recognition accuracy (94.28% accuracy, 94% precision, 94.61% recall, and 94.23% F1-score) even under conditions of substantial interference and dataset variability. This research demonstrates that NIR spectroscopy-derived data can support genetic and physiological studies of drought-resistant seed varieties, facilitating a deeper understanding of drought resistance mechanisms and optimizing breeding strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信