{"title":"用浆细胞驾驭免疫环境:精准免疫疗法的泛癌症特征。","authors":"Bicheng Ye, Aimin Jiang, Feng Liang, Changcheng Wang, Xiaoqing Liang, Pengpeng Zhang","doi":"10.1002/biof.2142","DOIUrl":null,"url":null,"abstract":"<p><p>Immunotherapy has revolutionized cancer treatment; however, predicting patient response remains a significant challenge. Our study identified a novel plasma cell signature, Plasma cell.Sig, through a pan-cancer single-cell RNA sequencing analysis, which predicts patient outcomes to immunotherapy with remarkable accuracy. The signature was developed using rigorous machine learning algorithms and validated across multiple cohorts, demonstrating superior predictive power with an area under the curve (AUC) exceeding 0.7. Notably, the low-risk group, as classified by Plasma cell.Sig, exhibited enriched immune cell infiltration and heightened tumor immunogenicity, indicating an enhanced responsiveness to immunotherapy. Conversely, the high-risk group showed reduced immune activity and potential mechanisms of immune evasion. These findings not only enhance understanding of the intrinsic and extrinsic immune landscapes within the tumor microenvironment but also pave the way for more precise, biomarker-guided immunotherapy approaches in oncology.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Navigating the immune landscape with plasma cells: A pan-cancer signature for precision immunotherapy.\",\"authors\":\"Bicheng Ye, Aimin Jiang, Feng Liang, Changcheng Wang, Xiaoqing Liang, Pengpeng Zhang\",\"doi\":\"10.1002/biof.2142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunotherapy has revolutionized cancer treatment; however, predicting patient response remains a significant challenge. Our study identified a novel plasma cell signature, Plasma cell.Sig, through a pan-cancer single-cell RNA sequencing analysis, which predicts patient outcomes to immunotherapy with remarkable accuracy. The signature was developed using rigorous machine learning algorithms and validated across multiple cohorts, demonstrating superior predictive power with an area under the curve (AUC) exceeding 0.7. Notably, the low-risk group, as classified by Plasma cell.Sig, exhibited enriched immune cell infiltration and heightened tumor immunogenicity, indicating an enhanced responsiveness to immunotherapy. Conversely, the high-risk group showed reduced immune activity and potential mechanisms of immune evasion. These findings not only enhance understanding of the intrinsic and extrinsic immune landscapes within the tumor microenvironment but also pave the way for more precise, biomarker-guided immunotherapy approaches in oncology.</p>\",\"PeriodicalId\":8923,\"journal\":{\"name\":\"BioFactors\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioFactors\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/biof.2142\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/biof.2142","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Navigating the immune landscape with plasma cells: A pan-cancer signature for precision immunotherapy.
Immunotherapy has revolutionized cancer treatment; however, predicting patient response remains a significant challenge. Our study identified a novel plasma cell signature, Plasma cell.Sig, through a pan-cancer single-cell RNA sequencing analysis, which predicts patient outcomes to immunotherapy with remarkable accuracy. The signature was developed using rigorous machine learning algorithms and validated across multiple cohorts, demonstrating superior predictive power with an area under the curve (AUC) exceeding 0.7. Notably, the low-risk group, as classified by Plasma cell.Sig, exhibited enriched immune cell infiltration and heightened tumor immunogenicity, indicating an enhanced responsiveness to immunotherapy. Conversely, the high-risk group showed reduced immune activity and potential mechanisms of immune evasion. These findings not only enhance understanding of the intrinsic and extrinsic immune landscapes within the tumor microenvironment but also pave the way for more precise, biomarker-guided immunotherapy approaches in oncology.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.