{"title":"用于高性能锂离子电池的 N、P 共掺硬碳阳极,具有更高的容量保持率和循环稳定性。","authors":"Penglun Zheng, Jing Wu, Haihan Zhao, Junwei Li, Zhihong Liu, Yun Zheng","doi":"10.1002/asia.202401071","DOIUrl":null,"url":null,"abstract":"<p><p>Compared to the traditional graphite anode, heteroatom-doped polymer carbon materials have high capacity retention due to their high porosity and porous structure. Therefore, they have great potential for application in lithium-ion battery (LIB) anodes. In this work, an N, P co-doped precursor polymer material (MBPp), synthesized via a one-pot method using bisphenol-A (C-source), melamine (N-source), and 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (P-source). The resulting N, P-co-doped hard carbon materials (MBPs) were prepared at various pyrolysis temperatures, yielding microporous, mesoporous, and macroporous structures. MBP materials demonstrated excellent electrochemical performance as LIB anodes. Notably, MBP-900 achieved a reversible capacity of 262 mAh g-1 at 1000 mA g-1 (in 0.005-2.0 V voltage range) with a capacity retention rate of 97.2% after 1000 cycles. These findings highlight the significance of MBP materials, which possess numerous defects, large layer gaps, and excellent cycle stability, in advancing the development of polymer anode materials for LIBs.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N, P co-Doped Hard Carbon Anodes for High-Performance Lithium-Ion Batteries with Enhanced Capacity Retention and Cycle Stability.\",\"authors\":\"Penglun Zheng, Jing Wu, Haihan Zhao, Junwei Li, Zhihong Liu, Yun Zheng\",\"doi\":\"10.1002/asia.202401071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Compared to the traditional graphite anode, heteroatom-doped polymer carbon materials have high capacity retention due to their high porosity and porous structure. Therefore, they have great potential for application in lithium-ion battery (LIB) anodes. In this work, an N, P co-doped precursor polymer material (MBPp), synthesized via a one-pot method using bisphenol-A (C-source), melamine (N-source), and 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (P-source). The resulting N, P-co-doped hard carbon materials (MBPs) were prepared at various pyrolysis temperatures, yielding microporous, mesoporous, and macroporous structures. MBP materials demonstrated excellent electrochemical performance as LIB anodes. Notably, MBP-900 achieved a reversible capacity of 262 mAh g-1 at 1000 mA g-1 (in 0.005-2.0 V voltage range) with a capacity retention rate of 97.2% after 1000 cycles. These findings highlight the significance of MBP materials, which possess numerous defects, large layer gaps, and excellent cycle stability, in advancing the development of polymer anode materials for LIBs.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1002/asia.202401071\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401071","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
N, P co-Doped Hard Carbon Anodes for High-Performance Lithium-Ion Batteries with Enhanced Capacity Retention and Cycle Stability.
Compared to the traditional graphite anode, heteroatom-doped polymer carbon materials have high capacity retention due to their high porosity and porous structure. Therefore, they have great potential for application in lithium-ion battery (LIB) anodes. In this work, an N, P co-doped precursor polymer material (MBPp), synthesized via a one-pot method using bisphenol-A (C-source), melamine (N-source), and 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (P-source). The resulting N, P-co-doped hard carbon materials (MBPs) were prepared at various pyrolysis temperatures, yielding microporous, mesoporous, and macroporous structures. MBP materials demonstrated excellent electrochemical performance as LIB anodes. Notably, MBP-900 achieved a reversible capacity of 262 mAh g-1 at 1000 mA g-1 (in 0.005-2.0 V voltage range) with a capacity retention rate of 97.2% after 1000 cycles. These findings highlight the significance of MBP materials, which possess numerous defects, large layer gaps, and excellent cycle stability, in advancing the development of polymer anode materials for LIBs.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).