通过集成微设备同时探测活细胞的机械和电气特性

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Johnson Q. Cui, Ye Tian, Zhihao Wu, Lu Zhang, William C. Cho, Shuhuai Yao, Yuan Lin
{"title":"通过集成微设备同时探测活细胞的机械和电气特性","authors":"Johnson Q. Cui, Ye Tian, Zhihao Wu, Lu Zhang, William C. Cho, Shuhuai Yao, Yuan Lin","doi":"10.1021/acs.nanolett.4c05005","DOIUrl":null,"url":null,"abstract":"The mechanical and electrical properties of cells serve as critical indicators of their physiological and pathological state. Currently, distinct setups are required to measure the electrical and mechanical responses of cells. In addition, most existing methods such as optical trapping (OT) and atomic force microscopy (AFM) are labor-intensive, expensive, and low-throughput. Here, we developed a microdevice that integrates automated cell trapping, deformation, and electric impedance spectroscopy to overcome these limitations. Our device enables parallel aspiration of tens of trapped cells in a highly scalable manner by simply adjusting the applied pressures, allowing for rapid probing of the dynamic viscoelastic properties of cells. Furthermore, embedded microelectrodes enable concurrent investigations of the electrical impedance of the cells. Through testing on different cell types, our platform demonstrated superior capabilities in comprehensive cell characterization and phenotyping, highlighting its great potential as a versatile tool for single cell analysis, drug screening, and disease detection.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"7 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concurrently Probing the Mechanical and Electrical Characteristics of Living Cells via an Integrated Microdevice\",\"authors\":\"Johnson Q. Cui, Ye Tian, Zhihao Wu, Lu Zhang, William C. Cho, Shuhuai Yao, Yuan Lin\",\"doi\":\"10.1021/acs.nanolett.4c05005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mechanical and electrical properties of cells serve as critical indicators of their physiological and pathological state. Currently, distinct setups are required to measure the electrical and mechanical responses of cells. In addition, most existing methods such as optical trapping (OT) and atomic force microscopy (AFM) are labor-intensive, expensive, and low-throughput. Here, we developed a microdevice that integrates automated cell trapping, deformation, and electric impedance spectroscopy to overcome these limitations. Our device enables parallel aspiration of tens of trapped cells in a highly scalable manner by simply adjusting the applied pressures, allowing for rapid probing of the dynamic viscoelastic properties of cells. Furthermore, embedded microelectrodes enable concurrent investigations of the electrical impedance of the cells. Through testing on different cell types, our platform demonstrated superior capabilities in comprehensive cell characterization and phenotyping, highlighting its great potential as a versatile tool for single cell analysis, drug screening, and disease detection.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c05005\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05005","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

细胞的机械和电特性是其生理和病理状态的重要指标。目前,测量细胞的电反应和机械反应需要不同的装置。此外,现有的大多数方法,如光学捕获(OT)和原子力显微镜(AFM),都是劳动密集型的、昂贵的和低通量的。在此,我们开发了一种集自动细胞捕获、变形和电阻抗光谱分析于一体的微型装置,以克服这些局限性。我们的设备只需调整施加的压力,就能以高度可扩展的方式并行吸入数十个被捕获的细胞,从而快速探测细胞的动态粘弹性特性。此外,嵌入式微电极可同时研究细胞的电阻抗。通过对不同类型细胞的测试,我们的平台在综合细胞表征和表型方面表现出了卓越的能力,凸显了其作为单细胞分析、药物筛选和疾病检测多功能工具的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Concurrently Probing the Mechanical and Electrical Characteristics of Living Cells via an Integrated Microdevice

Concurrently Probing the Mechanical and Electrical Characteristics of Living Cells via an Integrated Microdevice
The mechanical and electrical properties of cells serve as critical indicators of their physiological and pathological state. Currently, distinct setups are required to measure the electrical and mechanical responses of cells. In addition, most existing methods such as optical trapping (OT) and atomic force microscopy (AFM) are labor-intensive, expensive, and low-throughput. Here, we developed a microdevice that integrates automated cell trapping, deformation, and electric impedance spectroscopy to overcome these limitations. Our device enables parallel aspiration of tens of trapped cells in a highly scalable manner by simply adjusting the applied pressures, allowing for rapid probing of the dynamic viscoelastic properties of cells. Furthermore, embedded microelectrodes enable concurrent investigations of the electrical impedance of the cells. Through testing on different cell types, our platform demonstrated superior capabilities in comprehensive cell characterization and phenotyping, highlighting its great potential as a versatile tool for single cell analysis, drug screening, and disease detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信