Jiaqi Lv, Qingliang Zhao, Junqiu Jiang, Jing Ding, Liangliang Wei, Kun Wang
{"title":"以微生物燃料电池为动力的电-芬顿系统(MFCⓅEFs)与壳聚糖季铵盐耦合可改善污泥脱水性能","authors":"Jiaqi Lv, Qingliang Zhao, Junqiu Jiang, Jing Ding, Liangliang Wei, Kun Wang","doi":"10.1016/j.jclepro.2024.144149","DOIUrl":null,"url":null,"abstract":"As improved and expanded wastewater treatment facilities, sludge dewatering is the essential process and major challenge due to the complex and abundant organic matter. Microbial fuel cell powered electro-Fenton system (MFCⓅEFs) has been demonstrated to generate •OH and destroy hydrophilic extracellular polymeric substances (EPS) as an improved method of high efficiency and low energy consumption. Nevertheless, the smaller particle size of the treated sludge and the release of partial organic matter into the supernatant can affect the sludge-water separation process. Chitosan quaternary ammonium salt (CQAS) as a renewable and biodegradability cationic coagulant can be involved in the follow-up treatment. The sludge after combined treatment exhibited better dewaterability, where the water content of sludge cake (WC<sub>SC</sub>), capillary suction time (CST), and specific resistance filtration (SRF) were 61.21%, 15.6 s, and 1.02×10<sup>12</sup> m/kg (26.47%, 80.72% and 84.28% reduction), respectively. The oxidation of the MFCⓅEFs destroyed the cellular and EPS structure and the bridging flocculation and charge neutralization of CQAS caused the fine particles to squeeze each other. The combined treatment fully reduced the content of negative charge and hydrophilic substances on the surface, which affected the intensity change of N-H bond and altered the protein secondary structure to make it looser, thus releasing more bound water while improving aggregation characteristics. Overall, combined treatment can significantly improve sludge dewaterability and owns operational advantages of high efficiency, low energy and consumption, safety, and non-toxicity.","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":null,"pages":null},"PeriodicalIF":9.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sludge dewaterability improvement in microbial fuel cell powered electro-Fenton system (MFCⓅEFs) coupled with chitosan quaternary ammonium salt\",\"authors\":\"Jiaqi Lv, Qingliang Zhao, Junqiu Jiang, Jing Ding, Liangliang Wei, Kun Wang\",\"doi\":\"10.1016/j.jclepro.2024.144149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As improved and expanded wastewater treatment facilities, sludge dewatering is the essential process and major challenge due to the complex and abundant organic matter. Microbial fuel cell powered electro-Fenton system (MFCⓅEFs) has been demonstrated to generate •OH and destroy hydrophilic extracellular polymeric substances (EPS) as an improved method of high efficiency and low energy consumption. Nevertheless, the smaller particle size of the treated sludge and the release of partial organic matter into the supernatant can affect the sludge-water separation process. Chitosan quaternary ammonium salt (CQAS) as a renewable and biodegradability cationic coagulant can be involved in the follow-up treatment. The sludge after combined treatment exhibited better dewaterability, where the water content of sludge cake (WC<sub>SC</sub>), capillary suction time (CST), and specific resistance filtration (SRF) were 61.21%, 15.6 s, and 1.02×10<sup>12</sup> m/kg (26.47%, 80.72% and 84.28% reduction), respectively. The oxidation of the MFCⓅEFs destroyed the cellular and EPS structure and the bridging flocculation and charge neutralization of CQAS caused the fine particles to squeeze each other. The combined treatment fully reduced the content of negative charge and hydrophilic substances on the surface, which affected the intensity change of N-H bond and altered the protein secondary structure to make it looser, thus releasing more bound water while improving aggregation characteristics. Overall, combined treatment can significantly improve sludge dewaterability and owns operational advantages of high efficiency, low energy and consumption, safety, and non-toxicity.\",\"PeriodicalId\":349,\"journal\":{\"name\":\"Journal of Cleaner Production\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cleaner Production\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jclepro.2024.144149\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jclepro.2024.144149","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Sludge dewaterability improvement in microbial fuel cell powered electro-Fenton system (MFCⓅEFs) coupled with chitosan quaternary ammonium salt
As improved and expanded wastewater treatment facilities, sludge dewatering is the essential process and major challenge due to the complex and abundant organic matter. Microbial fuel cell powered electro-Fenton system (MFCⓅEFs) has been demonstrated to generate •OH and destroy hydrophilic extracellular polymeric substances (EPS) as an improved method of high efficiency and low energy consumption. Nevertheless, the smaller particle size of the treated sludge and the release of partial organic matter into the supernatant can affect the sludge-water separation process. Chitosan quaternary ammonium salt (CQAS) as a renewable and biodegradability cationic coagulant can be involved in the follow-up treatment. The sludge after combined treatment exhibited better dewaterability, where the water content of sludge cake (WCSC), capillary suction time (CST), and specific resistance filtration (SRF) were 61.21%, 15.6 s, and 1.02×1012 m/kg (26.47%, 80.72% and 84.28% reduction), respectively. The oxidation of the MFCⓅEFs destroyed the cellular and EPS structure and the bridging flocculation and charge neutralization of CQAS caused the fine particles to squeeze each other. The combined treatment fully reduced the content of negative charge and hydrophilic substances on the surface, which affected the intensity change of N-H bond and altered the protein secondary structure to make it looser, thus releasing more bound water while improving aggregation characteristics. Overall, combined treatment can significantly improve sludge dewaterability and owns operational advantages of high efficiency, low energy and consumption, safety, and non-toxicity.
期刊介绍:
The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.