基于 ReaxFF MD 模拟和实验对 Ca2SiO4 直接碳化过程的深入研究

IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Ya-Jun Wang, Xiao-Pei Zhang, Dong-Mei Liu, Jun-Guo Li, Jian-Bao Zhang, Yu-Wei Zhang, Ya-Nan Zeng, Yi-Tong Wang, Bao Liu, Xi Zhang, Ya-Jing Zhang
{"title":"基于 ReaxFF MD 模拟和实验对 Ca2SiO4 直接碳化过程的深入研究","authors":"Ya-Jun Wang,&nbsp;Xiao-Pei Zhang,&nbsp;Dong-Mei Liu,&nbsp;Jun-Guo Li,&nbsp;Jian-Bao Zhang,&nbsp;Yu-Wei Zhang,&nbsp;Ya-Nan Zeng,&nbsp;Yi-Tong Wang,&nbsp;Bao Liu,&nbsp;Xi Zhang,&nbsp;Ya-Jing Zhang","doi":"10.1016/j.cemconres.2024.107711","DOIUrl":null,"url":null,"abstract":"<div><div>Ca<sub>2</sub>SiO<sub>4</sub> is the primary carbonation-reactive mineral in steel slag, and demonstrates significant carbon sequestration potential, yet its microscopic reaction processes remain unclear. This study investigated the carbonation behavior of Ca<sub>2</sub>SiO<sub>4</sub> using ReaxFF MD simulations. The results indicated that as CO<sub>2</sub> concentration increased, the capture rate of Ca<sub>2</sub>SiO<sub>4</sub> decreased, and the molecular structure of the resulting CaCO<sub>3</sub> varied in oxygen origin. At room temperature, the carbonation rate of Ca₂SiO₄ gradually decreased over time until it reached equilibrium. Increasing the temperature could reactivate the carbonation, but the rate would still decline until it reached equilibrium again. Higher temperatures could accelerate the formation of the intermediate C<sub>2</sub>O<sub>5</sub><sup>2−</sup> and internal CO<sub>3</sub><sup>2−</sup> diffusion, thereby boosting the carbonation and increasing CO<sub>2</sub> adsorption. This study investigated the carbonation of Ca<sub>2</sub>SiO<sub>4</sub> at the atomic level, aiming to link microscopic molecular processes with macroscopic experimental phenomena, thereby providing a theoretical foundation for enhancing the carbonation efficiency of steel slag.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"187 ","pages":"Article 107711"},"PeriodicalIF":10.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into the direct carbonation process of Ca2SiO4 based on ReaxFF MD simulation and experiments\",\"authors\":\"Ya-Jun Wang,&nbsp;Xiao-Pei Zhang,&nbsp;Dong-Mei Liu,&nbsp;Jun-Guo Li,&nbsp;Jian-Bao Zhang,&nbsp;Yu-Wei Zhang,&nbsp;Ya-Nan Zeng,&nbsp;Yi-Tong Wang,&nbsp;Bao Liu,&nbsp;Xi Zhang,&nbsp;Ya-Jing Zhang\",\"doi\":\"10.1016/j.cemconres.2024.107711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ca<sub>2</sub>SiO<sub>4</sub> is the primary carbonation-reactive mineral in steel slag, and demonstrates significant carbon sequestration potential, yet its microscopic reaction processes remain unclear. This study investigated the carbonation behavior of Ca<sub>2</sub>SiO<sub>4</sub> using ReaxFF MD simulations. The results indicated that as CO<sub>2</sub> concentration increased, the capture rate of Ca<sub>2</sub>SiO<sub>4</sub> decreased, and the molecular structure of the resulting CaCO<sub>3</sub> varied in oxygen origin. At room temperature, the carbonation rate of Ca₂SiO₄ gradually decreased over time until it reached equilibrium. Increasing the temperature could reactivate the carbonation, but the rate would still decline until it reached equilibrium again. Higher temperatures could accelerate the formation of the intermediate C<sub>2</sub>O<sub>5</sub><sup>2−</sup> and internal CO<sub>3</sub><sup>2−</sup> diffusion, thereby boosting the carbonation and increasing CO<sub>2</sub> adsorption. This study investigated the carbonation of Ca<sub>2</sub>SiO<sub>4</sub> at the atomic level, aiming to link microscopic molecular processes with macroscopic experimental phenomena, thereby providing a theoretical foundation for enhancing the carbonation efficiency of steel slag.</div></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"187 \",\"pages\":\"Article 107711\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884624002928\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884624002928","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Ca2SiO4 是钢渣中主要的碳化反应矿物,具有显著的固碳潜力,但其微观反应过程仍不清楚。本研究利用 ReaxFF MD 模拟研究了 Ca2SiO4 的碳化行为。结果表明,随着二氧化碳浓度的增加,Ca2SiO4 的捕获率降低,生成的 CaCO3 分子结构因氧源而异。在室温下,Ca₂SiO₄ 的碳化率随着时间的推移逐渐降低,直至达到平衡。提高温度可以重新激活碳化,但碳化速率仍会下降,直至再次达到平衡。更高的温度可加速中间体 C2O52- 的形成和内部 CO32- 的扩散,从而促进碳化和增加 CO2 吸附。本研究从原子水平研究了 Ca2SiO4 的碳化过程,旨在将微观分子过程与宏观实验现象联系起来,从而为提高钢渣的碳化效率提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Insight into the direct carbonation process of Ca2SiO4 based on ReaxFF MD simulation and experiments

Insight into the direct carbonation process of Ca2SiO4 based on ReaxFF MD simulation and experiments

Insight into the direct carbonation process of Ca2SiO4 based on ReaxFF MD simulation and experiments
Ca2SiO4 is the primary carbonation-reactive mineral in steel slag, and demonstrates significant carbon sequestration potential, yet its microscopic reaction processes remain unclear. This study investigated the carbonation behavior of Ca2SiO4 using ReaxFF MD simulations. The results indicated that as CO2 concentration increased, the capture rate of Ca2SiO4 decreased, and the molecular structure of the resulting CaCO3 varied in oxygen origin. At room temperature, the carbonation rate of Ca₂SiO₄ gradually decreased over time until it reached equilibrium. Increasing the temperature could reactivate the carbonation, but the rate would still decline until it reached equilibrium again. Higher temperatures could accelerate the formation of the intermediate C2O52− and internal CO32− diffusion, thereby boosting the carbonation and increasing CO2 adsorption. This study investigated the carbonation of Ca2SiO4 at the atomic level, aiming to link microscopic molecular processes with macroscopic experimental phenomena, thereby providing a theoretical foundation for enhancing the carbonation efficiency of steel slag.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cement and Concrete Research
Cement and Concrete Research 工程技术-材料科学:综合
CiteScore
20.90
自引率
12.30%
发文量
318
审稿时长
53 days
期刊介绍: Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信