使用三步估计法处理潜类分析中的缺失数据

IF 2.5 2区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Sarah Depaoli, Fan Jia, Marieke Visser
{"title":"使用三步估计法处理潜类分析中的缺失数据","authors":"Sarah Depaoli, Fan Jia, Marieke Visser","doi":"10.1080/10705511.2024.2410240","DOIUrl":null,"url":null,"abstract":"This study specifically focuses on addressing the challenges related to employing missing data techniques when estimating a conditional Latent Class Analysis (LCA) model. In the context of a condit...","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"7 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing Missing Data in Latent Class Analysis When Using a Three-Step Estimation Approach\",\"authors\":\"Sarah Depaoli, Fan Jia, Marieke Visser\",\"doi\":\"10.1080/10705511.2024.2410240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study specifically focuses on addressing the challenges related to employing missing data techniques when estimating a conditional Latent Class Analysis (LCA) model. In the context of a condit...\",\"PeriodicalId\":21964,\"journal\":{\"name\":\"Structural Equation Modeling: A Multidisciplinary Journal\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Equation Modeling: A Multidisciplinary Journal\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/10705511.2024.2410240\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Equation Modeling: A Multidisciplinary Journal","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/10705511.2024.2410240","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究特别关注在估算条件潜类分析(LCA)模型时采用缺失数据技术所面临的挑战。在有条件潜类分析模型的背景下,缺失数据是一个重要的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Addressing Missing Data in Latent Class Analysis When Using a Three-Step Estimation Approach
This study specifically focuses on addressing the challenges related to employing missing data techniques when estimating a conditional Latent Class Analysis (LCA) model. In the context of a condit...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
11.70%
发文量
71
审稿时长
>12 weeks
期刊介绍: Structural Equation Modeling: A Multidisciplinary Journal publishes refereed scholarly work from all academic disciplines interested in structural equation modeling. These disciplines include, but are not limited to, psychology, medicine, sociology, education, political science, economics, management, and business/marketing. Theoretical articles address new developments; applied articles deal with innovative structural equation modeling applications; the Teacher’s Corner provides instructional modules on aspects of structural equation modeling; book and software reviews examine new modeling information and techniques; and advertising alerts readers to new products. Comments on technical or substantive issues addressed in articles or reviews published in the journal are encouraged; comments are reviewed, and authors of the original works are invited to respond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信