快-变-快解释了气候变化导致高层喷流减弱的原因

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Tiffany A. Shaw, Osamu Miyawaki, Hsing-Hung Chou, Russell Blackport
{"title":"快-变-快解释了气候变化导致高层喷流减弱的原因","authors":"Tiffany A. Shaw, Osamu Miyawaki, Hsing-Hung Chou, Russell Blackport","doi":"10.1038/s43247-024-01819-4","DOIUrl":null,"url":null,"abstract":"Earth’s upper-level jet streams primarily flow in the eastward direction. They often exhibit a north-south component or waviness connected to extreme weather at the surface. Recently the upper-level eastward jet stream was found to exhibit a fast-get-faster response under climate change explained by the impact of the nonlinear Clausius-Clapeyron relation on the latitudinal density contrast. Here we show the fast-get-faster mechanism also applies to the upper-level north-south jet stream wind and the longitudinal density contrast, implying increased waviness under climate change. Arctic Sea ice loss, which has been proposed as a driver of increased waviness, cannot explain the response. It leads to a fast-get-slower waviness response at all vertical levels. We demonstrate the fast-get-faster waviness signal has emerged in reanalysis data in the Southern Hemisphere but not yet in the Northern Hemisphere. The results show the fast-get-faster mechanism explains upper-level waviness changes and highlights a tug of war between upper- and mid-level waviness under climate change. Climate change causes upper-level jet stream waviness to increase in both hemispheres, with extreme southward and northward excursions increasing faster than the mean, according to results from a fast-get-faster mechanism connecting waviness to density contrast changes.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-10"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01819-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Fast-get-faster explains wavier upper-level jet stream under climate change\",\"authors\":\"Tiffany A. Shaw, Osamu Miyawaki, Hsing-Hung Chou, Russell Blackport\",\"doi\":\"10.1038/s43247-024-01819-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earth’s upper-level jet streams primarily flow in the eastward direction. They often exhibit a north-south component or waviness connected to extreme weather at the surface. Recently the upper-level eastward jet stream was found to exhibit a fast-get-faster response under climate change explained by the impact of the nonlinear Clausius-Clapeyron relation on the latitudinal density contrast. Here we show the fast-get-faster mechanism also applies to the upper-level north-south jet stream wind and the longitudinal density contrast, implying increased waviness under climate change. Arctic Sea ice loss, which has been proposed as a driver of increased waviness, cannot explain the response. It leads to a fast-get-slower waviness response at all vertical levels. We demonstrate the fast-get-faster waviness signal has emerged in reanalysis data in the Southern Hemisphere but not yet in the Northern Hemisphere. The results show the fast-get-faster mechanism explains upper-level waviness changes and highlights a tug of war between upper- and mid-level waviness under climate change. Climate change causes upper-level jet stream waviness to increase in both hemispheres, with extreme southward and northward excursions increasing faster than the mean, according to results from a fast-get-faster mechanism connecting waviness to density contrast changes.\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43247-024-01819-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s43247-024-01819-4\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01819-4","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

地球高层喷流主要向东流动。它们经常表现出与地表极端天气相关的南北向成分或摆动。最近研究发现,在气候变化的影响下,高层向东喷射气流表现出 "快-变-快 "的反应,其原因是非线性克劳修斯-克拉皮戎关系对纬度密度对比的影响。在这里,我们证明了快变快机制也适用于高层南北喷流风和纵向密度对比,这意味着在气候变化下波浪性增加。北极海冰的减少被认为是波状增加的驱动因素,但它无法解释这种反应。它导致在所有垂直水平上都出现了快变慢的波动响应。我们在南半球的再分析数据中证明了快变快的波动信号,但在北半球尚未出现。结果表明,"快-变-快 "机制解释了高层气流摆动的变化,并凸显了气候变化下高层和中层气流摆动之间的角力。气候变化导致两个半球的高层喷射气流摆动度增加,极端的向南和向北偏移比平均值增加得更快,这是连接摆动度和密度对比变化的 "快-变-快 "机制的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fast-get-faster explains wavier upper-level jet stream under climate change

Fast-get-faster explains wavier upper-level jet stream under climate change
Earth’s upper-level jet streams primarily flow in the eastward direction. They often exhibit a north-south component or waviness connected to extreme weather at the surface. Recently the upper-level eastward jet stream was found to exhibit a fast-get-faster response under climate change explained by the impact of the nonlinear Clausius-Clapeyron relation on the latitudinal density contrast. Here we show the fast-get-faster mechanism also applies to the upper-level north-south jet stream wind and the longitudinal density contrast, implying increased waviness under climate change. Arctic Sea ice loss, which has been proposed as a driver of increased waviness, cannot explain the response. It leads to a fast-get-slower waviness response at all vertical levels. We demonstrate the fast-get-faster waviness signal has emerged in reanalysis data in the Southern Hemisphere but not yet in the Northern Hemisphere. The results show the fast-get-faster mechanism explains upper-level waviness changes and highlights a tug of war between upper- and mid-level waviness under climate change. Climate change causes upper-level jet stream waviness to increase in both hemispheres, with extreme southward and northward excursions increasing faster than the mean, according to results from a fast-get-faster mechanism connecting waviness to density contrast changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信