奥斯兰德型条件和弱戈伦斯坦代数

IF 0.8 3区 数学 Q2 MATHEMATICS
Zhaoyong Huang
{"title":"奥斯兰德型条件和弱戈伦斯坦代数","authors":"Zhaoyong Huang","doi":"10.1112/blms.13138","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> be an Artin algebra. Under certain Auslander-type conditions, we give some equivalent characterizations of (weakly) Gorenstein algebras in terms of the properties of Gorenstein projective modules and modules satisfying Auslander-type conditions. As applications, we provide some support for several homological conjectures. In particular, we prove that if <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> is left quasi-Auslander, then <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> is Gorenstein if and only if it is (left and) right weakly Gorenstein; and that if <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> satisfies the Auslander condition, then <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> is Gorenstein if and only if it is left or right weakly Gorenstein. This is a reduction of an Auslander–Reiten's conjecture, which states that <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> is Gorenstein if <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> satisfies the Auslander condition.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3382-3399"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auslander-type conditions and weakly Gorenstein algebras\",\"authors\":\"Zhaoyong Huang\",\"doi\":\"10.1112/blms.13138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> be an Artin algebra. Under certain Auslander-type conditions, we give some equivalent characterizations of (weakly) Gorenstein algebras in terms of the properties of Gorenstein projective modules and modules satisfying Auslander-type conditions. As applications, we provide some support for several homological conjectures. In particular, we prove that if <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> is left quasi-Auslander, then <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> is Gorenstein if and only if it is (left and) right weakly Gorenstein; and that if <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> satisfies the Auslander condition, then <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> is Gorenstein if and only if it is left or right weakly Gorenstein. This is a reduction of an Auslander–Reiten's conjecture, which states that <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> is Gorenstein if <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> satisfies the Auslander condition.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 11\",\"pages\":\"3382-3399\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13138\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13138","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 R $R$ 是一个阿廷代数。在某些奥斯兰德型条件下,我们根据满足奥斯兰德型条件的戈伦斯坦射影模块和模块的性质,给出了(弱)戈伦斯坦代数的一些等价特征。作为应用,我们为几个同调猜想提供了一些支持。特别是,我们证明了如果 R $R$ 是左准奥斯兰德,那么当且仅当 R $R$ 是(左和)右弱戈伦斯坦时,它就是戈伦斯坦;如果 R $R$ 满足奥斯兰德条件,那么当且仅当 R $R$ 是左或右弱戈伦斯坦时,它就是戈伦斯坦。这是 Auslander-Reiten 猜想的简化,即如果 R $R$ 满足 Auslander 条件,则 R $R$ 是 Gorenstein。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auslander-type conditions and weakly Gorenstein algebras

Let R $R$ be an Artin algebra. Under certain Auslander-type conditions, we give some equivalent characterizations of (weakly) Gorenstein algebras in terms of the properties of Gorenstein projective modules and modules satisfying Auslander-type conditions. As applications, we provide some support for several homological conjectures. In particular, we prove that if R $R$ is left quasi-Auslander, then R $R$ is Gorenstein if and only if it is (left and) right weakly Gorenstein; and that if R $R$ satisfies the Auslander condition, then R $R$ is Gorenstein if and only if it is left or right weakly Gorenstein. This is a reduction of an Auslander–Reiten's conjecture, which states that R $R$ is Gorenstein if R $R$ satisfies the Auslander condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信