无限伽罗瓦理论和算法随机代数域中的可计算性

IF 1 2区 数学 Q1 MATHEMATICS
Wesley Calvert, Valentina Harizanov, Alexandra Shlapentokh
{"title":"无限伽罗瓦理论和算法随机代数域中的可计算性","authors":"Wesley Calvert,&nbsp;Valentina Harizanov,&nbsp;Alexandra Shlapentokh","doi":"10.1112/jlms.70017","DOIUrl":null,"url":null,"abstract":"<p>We introduce a notion of algorithmic randomness for algebraic fields. We prove the existence of a continuum of algebraic extensions of <span></span><math>\n <semantics>\n <mi>Q</mi>\n <annotation>${\\mathbb {Q}}$</annotation>\n </semantics></math> that are random according to our definition. We show that there are noncomputable algebraic fields which are not random. We also partially characterize the index set, relative to an oracle, of the set of random algebraic fields computable relative to that oracle.</p><p>In order to carry out this investigation of randomness for fields, we develop computability in the context of the infinite Galois theory (where the relevant Galois groups are uncountable), including definitions of computable and computably enumerable Galois groups and computability of Haar measure on the Galois groups.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computability in infinite Galois theory and algorithmically random algebraic fields\",\"authors\":\"Wesley Calvert,&nbsp;Valentina Harizanov,&nbsp;Alexandra Shlapentokh\",\"doi\":\"10.1112/jlms.70017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a notion of algorithmic randomness for algebraic fields. We prove the existence of a continuum of algebraic extensions of <span></span><math>\\n <semantics>\\n <mi>Q</mi>\\n <annotation>${\\\\mathbb {Q}}$</annotation>\\n </semantics></math> that are random according to our definition. We show that there are noncomputable algebraic fields which are not random. We also partially characterize the index set, relative to an oracle, of the set of random algebraic fields computable relative to that oracle.</p><p>In order to carry out this investigation of randomness for fields, we develop computability in the context of the infinite Galois theory (where the relevant Galois groups are uncountable), including definitions of computable and computably enumerable Galois groups and computability of Haar measure on the Galois groups.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70017\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70017","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了代数域的算法随机性概念。我们证明了 Q 的代数扩展 ${mathbb {Q}}$ 的连续体的存在,根据我们的定义,这些扩展是随机的。我们证明了有一些不可计算的代数域不是随机的。为了对场的随机性进行研究,我们在无限伽罗瓦理论(相关的伽罗瓦群是不可数的)的背景下发展了可计算性,包括可计算和可计算可数伽罗瓦群的定义,以及伽罗瓦群上哈氏量的可计算性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computability in infinite Galois theory and algorithmically random algebraic fields

We introduce a notion of algorithmic randomness for algebraic fields. We prove the existence of a continuum of algebraic extensions of Q ${\mathbb {Q}}$ that are random according to our definition. We show that there are noncomputable algebraic fields which are not random. We also partially characterize the index set, relative to an oracle, of the set of random algebraic fields computable relative to that oracle.

In order to carry out this investigation of randomness for fields, we develop computability in the context of the infinite Galois theory (where the relevant Galois groups are uncountable), including definitions of computable and computably enumerable Galois groups and computability of Haar measure on the Galois groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信