对口条不对称的动态控制:沿岸流的作用

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Haiwei Li, Maarten van der Vegt, Feng Liu, Qingshu Yang
{"title":"对口条不对称的动态控制:沿岸流的作用","authors":"Haiwei Li,&nbsp;Maarten van der Vegt,&nbsp;Feng Liu,&nbsp;Qingshu Yang","doi":"10.1029/2024JF007852","DOIUrl":null,"url":null,"abstract":"<p>Mouth bar formation is critical for channel avulsions and progradation of river deltas. The morphology of mouth bars results from different hydrodynamic forcings such as river jets, tides, and wind waves. Here we study the asymmetry of mouth bars due to alongshore currents. Adopting a numerical model, we study how alongshore propagating tides and net alongshore currents cause asymmetric mouth bar formation. The results indicate that alongshore propagating tides shift the depocenter of the mouth bar in the direction of the alongshore currents during peak ebb. Net alongshore currents shift the depocenter to its down-current side. The main channels are oriented in the opposite direction of peak flood flows (with tides) or in the direction of the net alongshore currents (without tides). Systems highly influenced by alongshore tidal flows tend to form more and wider distributary channels which are oriented toward the direction of the alongshore ebb flows. With increased river discharge and sediment influx, the number of bifurcations and channels increases while the mouth bar is less asymmetric. We developed a predictor showing that the mouth bar asymmetry is directly proportional to alongshore currents divided by river jet velocities and the width of the river mouth. Our findings provide insights into the evolution of river deltas and contribute to the management of mouth bars and channels.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 11","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007852","citationCount":"0","resultStr":"{\"title\":\"Dynamic Controls on the Asymmetry of Mouth Bars: Role of Alongshore Currents\",\"authors\":\"Haiwei Li,&nbsp;Maarten van der Vegt,&nbsp;Feng Liu,&nbsp;Qingshu Yang\",\"doi\":\"10.1029/2024JF007852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mouth bar formation is critical for channel avulsions and progradation of river deltas. The morphology of mouth bars results from different hydrodynamic forcings such as river jets, tides, and wind waves. Here we study the asymmetry of mouth bars due to alongshore currents. Adopting a numerical model, we study how alongshore propagating tides and net alongshore currents cause asymmetric mouth bar formation. The results indicate that alongshore propagating tides shift the depocenter of the mouth bar in the direction of the alongshore currents during peak ebb. Net alongshore currents shift the depocenter to its down-current side. The main channels are oriented in the opposite direction of peak flood flows (with tides) or in the direction of the net alongshore currents (without tides). Systems highly influenced by alongshore tidal flows tend to form more and wider distributary channels which are oriented toward the direction of the alongshore ebb flows. With increased river discharge and sediment influx, the number of bifurcations and channels increases while the mouth bar is less asymmetric. We developed a predictor showing that the mouth bar asymmetry is directly proportional to alongshore currents divided by river jet velocities and the width of the river mouth. Our findings provide insights into the evolution of river deltas and contribute to the management of mouth bars and channels.</p>\",\"PeriodicalId\":15887,\"journal\":{\"name\":\"Journal of Geophysical Research: Earth Surface\",\"volume\":\"129 11\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007852\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Earth Surface\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007852\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007852","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

河口坝的形成对河道崩蚀和河道三角洲的前移至关重要。河道喷流、潮汐和风浪等不同的水动力作用会导致口岸的形态变化。在此,我们研究了沿岸流导致的口岸不对称问题。通过数值模型,我们研究了沿岸传播潮汐和净沿岸流是如何导致不对称口岸形成的。研究结果表明,在退潮高峰期,沿岸传播潮汐会将口栅的沉积中心向沿岸流方向移动。净沿岸流将口栅的沉积中心移向其顺流一侧。主河道的方向与洪峰流量的方向相反(有潮汐时),或与净沿岸流的方向一致(无潮汐时)。受沿岸潮汐流影响较大的水系往往会形成更多更宽的支流河道,这些河道的方向与沿岸潮汐流的方向一致。随着河流流量和泥沙流入量的增加,分叉和河道的数量也会增加,同时口岸的不对称程度也会降低。我们开发的预测工具显示,口岸不对称与沿岸流除以河流喷流速度和河口宽度成正比。我们的研究结果有助于深入了解河流三角洲的演变过程,并有助于口岸和河道的管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamic Controls on the Asymmetry of Mouth Bars: Role of Alongshore Currents

Dynamic Controls on the Asymmetry of Mouth Bars: Role of Alongshore Currents

Mouth bar formation is critical for channel avulsions and progradation of river deltas. The morphology of mouth bars results from different hydrodynamic forcings such as river jets, tides, and wind waves. Here we study the asymmetry of mouth bars due to alongshore currents. Adopting a numerical model, we study how alongshore propagating tides and net alongshore currents cause asymmetric mouth bar formation. The results indicate that alongshore propagating tides shift the depocenter of the mouth bar in the direction of the alongshore currents during peak ebb. Net alongshore currents shift the depocenter to its down-current side. The main channels are oriented in the opposite direction of peak flood flows (with tides) or in the direction of the net alongshore currents (without tides). Systems highly influenced by alongshore tidal flows tend to form more and wider distributary channels which are oriented toward the direction of the alongshore ebb flows. With increased river discharge and sediment influx, the number of bifurcations and channels increases while the mouth bar is less asymmetric. We developed a predictor showing that the mouth bar asymmetry is directly proportional to alongshore currents divided by river jet velocities and the width of the river mouth. Our findings provide insights into the evolution of river deltas and contribute to the management of mouth bars and channels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信