{"title":"论无常变的扭转所产生的场的伽罗瓦性质","authors":"S. Checcoli, G. A. Dill","doi":"10.1112/blms.13149","DOIUrl":null,"url":null,"abstract":"<p>In this article, we study a certain Galois property of subextensions of <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>(</mo>\n <msub>\n <mi>A</mi>\n <mi>tors</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$k(A_{\\mathrm{tors}})$</annotation>\n </semantics></math>, the minimal field of definition of all torsion points of an abelian variety <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> defined over a number field <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>. Concretely, we show that each subfield of <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>(</mo>\n <msub>\n <mi>A</mi>\n <mi>tors</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$k(A_{\\mathrm{tors}})$</annotation>\n </semantics></math> that is Galois over <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> (of possibly infinite degree) and whose Galois group has finite exponent is contained in an abelian extension of some finite extension of <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>. As an immediate corollary of this result and a theorem of Bombieri and Zannier, we deduce that each such field has the Northcott property, that is, does not contain any infinite set of algebraic numbers of bounded height.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3530-3541"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Galois property of fields generated by the torsion of an abelian variety\",\"authors\":\"S. Checcoli, G. A. Dill\",\"doi\":\"10.1112/blms.13149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we study a certain Galois property of subextensions of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>A</mi>\\n <mi>tors</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$k(A_{\\\\mathrm{tors}})$</annotation>\\n </semantics></math>, the minimal field of definition of all torsion points of an abelian variety <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> defined over a number field <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>. Concretely, we show that each subfield of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>A</mi>\\n <mi>tors</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$k(A_{\\\\mathrm{tors}})$</annotation>\\n </semantics></math> that is Galois over <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> (of possibly infinite degree) and whose Galois group has finite exponent is contained in an abelian extension of some finite extension of <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>. As an immediate corollary of this result and a theorem of Bombieri and Zannier, we deduce that each such field has the Northcott property, that is, does not contain any infinite set of algebraic numbers of bounded height.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 11\",\"pages\":\"3530-3541\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13149\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13149","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究 k ( A tors ) $k(A_{/mathrm{tors}})$,即定义在数域 k $k$ 上的无常花序 A $A$ 的所有扭转点的最小定义域的子扩展的某个伽罗瓦性质。具体地说,我们证明 k ( A tors ) $k(A_{\mathrm{tors}})$的每个子域,如果是 k $k$ 上的伽罗华域(可能是无限阶的),并且其伽罗华群具有有限指数,那么这些子域都包含在 k $k$ 的某个有限扩展的无邻扩展中。作为这一结果的直接推论以及邦比耶里和赞尼尔的定理,我们推导出每个这样的域都具有诺斯科特性质,即不包含任何有界高的代数数的无限集。
On a Galois property of fields generated by the torsion of an abelian variety
In this article, we study a certain Galois property of subextensions of , the minimal field of definition of all torsion points of an abelian variety defined over a number field . Concretely, we show that each subfield of that is Galois over (of possibly infinite degree) and whose Galois group has finite exponent is contained in an abelian extension of some finite extension of . As an immediate corollary of this result and a theorem of Bombieri and Zannier, we deduce that each such field has the Northcott property, that is, does not contain any infinite set of algebraic numbers of bounded height.