论无常变的扭转所产生的场的伽罗瓦性质

IF 0.8 3区 数学 Q2 MATHEMATICS
S. Checcoli, G. A. Dill
{"title":"论无常变的扭转所产生的场的伽罗瓦性质","authors":"S. Checcoli,&nbsp;G. A. Dill","doi":"10.1112/blms.13149","DOIUrl":null,"url":null,"abstract":"<p>In this article, we study a certain Galois property of subextensions of <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>(</mo>\n <msub>\n <mi>A</mi>\n <mi>tors</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$k(A_{\\mathrm{tors}})$</annotation>\n </semantics></math>, the minimal field of definition of all torsion points of an abelian variety <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> defined over a number field <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>. Concretely, we show that each subfield of <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>(</mo>\n <msub>\n <mi>A</mi>\n <mi>tors</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$k(A_{\\mathrm{tors}})$</annotation>\n </semantics></math> that is Galois over <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> (of possibly infinite degree) and whose Galois group has finite exponent is contained in an abelian extension of some finite extension of <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>. As an immediate corollary of this result and a theorem of Bombieri and Zannier, we deduce that each such field has the Northcott property, that is, does not contain any infinite set of algebraic numbers of bounded height.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3530-3541"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Galois property of fields generated by the torsion of an abelian variety\",\"authors\":\"S. Checcoli,&nbsp;G. A. Dill\",\"doi\":\"10.1112/blms.13149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we study a certain Galois property of subextensions of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>A</mi>\\n <mi>tors</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$k(A_{\\\\mathrm{tors}})$</annotation>\\n </semantics></math>, the minimal field of definition of all torsion points of an abelian variety <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> defined over a number field <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>. Concretely, we show that each subfield of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>A</mi>\\n <mi>tors</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$k(A_{\\\\mathrm{tors}})$</annotation>\\n </semantics></math> that is Galois over <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> (of possibly infinite degree) and whose Galois group has finite exponent is contained in an abelian extension of some finite extension of <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>. As an immediate corollary of this result and a theorem of Bombieri and Zannier, we deduce that each such field has the Northcott property, that is, does not contain any infinite set of algebraic numbers of bounded height.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 11\",\"pages\":\"3530-3541\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13149\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13149","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究 k ( A tors ) $k(A_{/mathrm{tors}})$,即定义在数域 k $k$ 上的无常花序 A $A$ 的所有扭转点的最小定义域的子扩展的某个伽罗瓦性质。具体地说,我们证明 k ( A tors ) $k(A_{\mathrm{tors}})$的每个子域,如果是 k $k$ 上的伽罗华域(可能是无限阶的),并且其伽罗华群具有有限指数,那么这些子域都包含在 k $k$ 的某个有限扩展的无邻扩展中。作为这一结果的直接推论以及邦比耶里和赞尼尔的定理,我们推导出每个这样的域都具有诺斯科特性质,即不包含任何有界高的代数数的无限集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Galois property of fields generated by the torsion of an abelian variety

In this article, we study a certain Galois property of subextensions of k ( A tors ) $k(A_{\mathrm{tors}})$ , the minimal field of definition of all torsion points of an abelian variety A $A$ defined over a number field k $k$ . Concretely, we show that each subfield of k ( A tors ) $k(A_{\mathrm{tors}})$ that is Galois over k $k$ (of possibly infinite degree) and whose Galois group has finite exponent is contained in an abelian extension of some finite extension of k $k$ . As an immediate corollary of this result and a theorem of Bombieri and Zannier, we deduce that each such field has the Northcott property, that is, does not contain any infinite set of algebraic numbers of bounded height.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信