算术级数和全形相位检索

IF 0.8 3区 数学 Q2 MATHEMATICS
Lukas Liehr
{"title":"算术级数和全形相位检索","authors":"Lukas Liehr","doi":"10.1112/blms.13134","DOIUrl":null,"url":null,"abstract":"<p>We study the determination of a holomorphic function from its absolute value. Given a parameter <span></span><math>\n <semantics>\n <mrow>\n <mi>θ</mi>\n <mo>∈</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$\\theta \\in \\mathbb {R}$</annotation>\n </semantics></math>, we derive the following characterization of uniqueness in terms of rigidity of a set <span></span><math>\n <semantics>\n <mrow>\n <mi>Λ</mi>\n <mo>⊆</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$\\Lambda \\subseteq \\mathbb {R}$</annotation>\n </semantics></math>: if <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> is a vector space of entire functions containing all exponentials <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>e</mi>\n <mrow>\n <mi>ξ</mi>\n <mi>z</mi>\n </mrow>\n </msup>\n <mo>,</mo>\n <mspace></mspace>\n <mi>ξ</mi>\n <mo>∈</mo>\n <mi>C</mi>\n <mo>∖</mo>\n <mrow>\n <mo>{</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation>$e^{\\xi z}, \\, \\xi \\in \\mathbb {C} \\setminus \\lbrace 0 \\rbrace$</annotation>\n </semantics></math>, then every <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>∈</mo>\n <mi>F</mi>\n </mrow>\n <annotation>$F \\in \\mathcal {F}$</annotation>\n </semantics></math> is uniquely determined up to a unimodular phase factor by <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mo>|</mo>\n <mi>F</mi>\n <mrow>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n <mo>|</mo>\n <mo>:</mo>\n <mi>z</mi>\n <mo>∈</mo>\n <msup>\n <mi>e</mi>\n <mrow>\n <mi>i</mi>\n <mi>θ</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>+</mo>\n <mi>i</mi>\n <mi>Λ</mi>\n <mo>)</mo>\n </mrow>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace |F(z)|: z \\in e^{i\\theta }({\\mathbb {R}}+ i \\Lambda) \\rbrace$</annotation>\n </semantics></math> if and only if <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> is not contained in an arithmetic progression <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mi>Z</mi>\n <mo>+</mo>\n <mi>b</mi>\n </mrow>\n <annotation>$a\\mathbb {Z}+b$</annotation>\n </semantics></math>. Leveraging this insight, we establish a series of consequences for Gabor phase retrieval and Pauli-type uniqueness problems. For instance, <span></span><math>\n <semantics>\n <mrow>\n <mi>Z</mi>\n <mo>×</mo>\n <mover>\n <mi>Z</mi>\n <mo>∼</mo>\n </mover>\n </mrow>\n <annotation>${\\mathbb {Z}}\\times \\tilde{{\\mathbb {Z}}}$</annotation>\n </semantics></math> is a uniqueness set for the Gabor phase retrieval problem in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>R</mi>\n <mo>+</mo>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^2({\\mathbb {R}}_+)$</annotation>\n </semantics></math>, provided that <span></span><math>\n <semantics>\n <mover>\n <mi>Z</mi>\n <mo>∼</mo>\n </mover>\n <annotation>$\\tilde{{\\mathbb {Z}}}$</annotation>\n </semantics></math> is a suitable perturbation of the integers.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3316-3330"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13134","citationCount":"0","resultStr":"{\"title\":\"Arithmetic progressions and holomorphic phase retrieval\",\"authors\":\"Lukas Liehr\",\"doi\":\"10.1112/blms.13134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the determination of a holomorphic function from its absolute value. Given a parameter <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>θ</mi>\\n <mo>∈</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$\\\\theta \\\\in \\\\mathbb {R}$</annotation>\\n </semantics></math>, we derive the following characterization of uniqueness in terms of rigidity of a set <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Λ</mi>\\n <mo>⊆</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$\\\\Lambda \\\\subseteq \\\\mathbb {R}$</annotation>\\n </semantics></math>: if <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$\\\\mathcal {F}$</annotation>\\n </semantics></math> is a vector space of entire functions containing all exponentials <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>e</mi>\\n <mrow>\\n <mi>ξ</mi>\\n <mi>z</mi>\\n </mrow>\\n </msup>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mi>ξ</mi>\\n <mo>∈</mo>\\n <mi>C</mi>\\n <mo>∖</mo>\\n <mrow>\\n <mo>{</mo>\\n <mn>0</mn>\\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation>$e^{\\\\xi z}, \\\\, \\\\xi \\\\in \\\\mathbb {C} \\\\setminus \\\\lbrace 0 \\\\rbrace$</annotation>\\n </semantics></math>, then every <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n <mo>∈</mo>\\n <mi>F</mi>\\n </mrow>\\n <annotation>$F \\\\in \\\\mathcal {F}$</annotation>\\n </semantics></math> is uniquely determined up to a unimodular phase factor by <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <mo>|</mo>\\n <mi>F</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>z</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>|</mo>\\n <mo>:</mo>\\n <mi>z</mi>\\n <mo>∈</mo>\\n <msup>\\n <mi>e</mi>\\n <mrow>\\n <mi>i</mi>\\n <mi>θ</mi>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>+</mo>\\n <mi>i</mi>\\n <mi>Λ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace |F(z)|: z \\\\in e^{i\\\\theta }({\\\\mathbb {R}}+ i \\\\Lambda) \\\\rbrace$</annotation>\\n </semantics></math> if and only if <span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> is not contained in an arithmetic progression <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mi>Z</mi>\\n <mo>+</mo>\\n <mi>b</mi>\\n </mrow>\\n <annotation>$a\\\\mathbb {Z}+b$</annotation>\\n </semantics></math>. Leveraging this insight, we establish a series of consequences for Gabor phase retrieval and Pauli-type uniqueness problems. For instance, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Z</mi>\\n <mo>×</mo>\\n <mover>\\n <mi>Z</mi>\\n <mo>∼</mo>\\n </mover>\\n </mrow>\\n <annotation>${\\\\mathbb {Z}}\\\\times \\\\tilde{{\\\\mathbb {Z}}}$</annotation>\\n </semantics></math> is a uniqueness set for the Gabor phase retrieval problem in <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>R</mi>\\n <mo>+</mo>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^2({\\\\mathbb {R}}_+)$</annotation>\\n </semantics></math>, provided that <span></span><math>\\n <semantics>\\n <mover>\\n <mi>Z</mi>\\n <mo>∼</mo>\\n </mover>\\n <annotation>$\\\\tilde{{\\\\mathbb {Z}}}$</annotation>\\n </semantics></math> is a suitable perturbation of the integers.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 11\",\"pages\":\"3316-3330\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13134\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13134\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13134","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究从全形函数的绝对值确定全形函数的问题。给定一个参数θ ∈ R $\theta \ in \mathbb {R}$ ,我们从集合Λ ⊆ R $\Lambda \subseteq \mathbb {R}$ 的刚度方面推导出以下唯一性特征:如果 F $\mathcal {F}$ 是包含所有指数 e ξ z , ξ ∈ C ∖ { 0 } 的全函数向量空间 $e^{xi z}, \, \xi \in \mathbb {C}\setminus \lbrace 0 \rbrace$, then every F ∈ F $F \in \mathcal {F}$ is uniquely determined up to a unimodular phase factor by { | F ( z ) | : z ∈ e i θ ( R + i Λ ) } $\lbrace |F(z)|: z ∈ e^{i\theta }({\mathbb {R}}+ i \Lambda) \rbrace$ 当且仅当 Λ $\Lambda$ 不包含在算术级数 a Z + b $a\mathbb {Z}+b$ 中时。利用这一洞察力,我们为 Gabor 相位检索和保利型唯一性问题确定了一系列结果。例如,对于 L 2 ( R + ) $L^2({\mathbb {R}}_+)$ 中的 Gabor 相位检索问题,只要 Z ∼ $\tilde{\mathbb {Z}}$ 是一个合适的整数扰动,那么 Z × Z ∼ ${\mathbb {Z}}/times \tilde{\mathbb {Z}}$ 就是一个唯一性集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arithmetic progressions and holomorphic phase retrieval

We study the determination of a holomorphic function from its absolute value. Given a parameter θ R $\theta \in \mathbb {R}$ , we derive the following characterization of uniqueness in terms of rigidity of a set Λ R $\Lambda \subseteq \mathbb {R}$ : if F $\mathcal {F}$ is a vector space of entire functions containing all exponentials e ξ z , ξ C { 0 } $e^{\xi z}, \, \xi \in \mathbb {C} \setminus \lbrace 0 \rbrace$ , then every F F $F \in \mathcal {F}$ is uniquely determined up to a unimodular phase factor by { | F ( z ) | : z e i θ ( R + i Λ ) } $\lbrace |F(z)|: z \in e^{i\theta }({\mathbb {R}}+ i \Lambda) \rbrace$ if and only if Λ $\Lambda$ is not contained in an arithmetic progression a Z + b $a\mathbb {Z}+b$ . Leveraging this insight, we establish a series of consequences for Gabor phase retrieval and Pauli-type uniqueness problems. For instance, Z × Z ${\mathbb {Z}}\times \tilde{{\mathbb {Z}}}$ is a uniqueness set for the Gabor phase retrieval problem in L 2 ( R + ) $L^2({\mathbb {R}}_+)$ , provided that Z $\tilde{{\mathbb {Z}}}$ is a suitable perturbation of the integers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信