横向 Kähler 流形上复杂 Hessian 方程 L ∞ $L^\infty$ 估计的 PDE 方法说明

IF 0.8 3区 数学 Q2 MATHEMATICS
P. Sivaram
{"title":"横向 Kähler 流形上复杂 Hessian 方程 L ∞ $L^\\infty$ 估计的 PDE 方法说明","authors":"P. Sivaram","doi":"10.1112/blms.13150","DOIUrl":null,"url":null,"abstract":"<p>In this note, the partial differential equation (PDE) approach of Guo–Phong–Tong and Guo–Phong–Tong–Wang adapted to prove an <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$L^\\infty$</annotation>\n </semantics></math> estimate for transverse complex Monge–Ampère equations on homologically orientable transverse Kähler manifolds. As an application, a purely PDE-based proof of the regularity of Calabi–Yau cone metrics on <span></span><math>\n <semantics>\n <mi>Q</mi>\n <annotation>$\\mathbb {Q}$</annotation>\n </semantics></math>-Gorenstein <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$\\mathbb {T}$</annotation>\n </semantics></math>-varieties is obtained.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3542-3564"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on the PDE approach to the \\n \\n \\n L\\n ∞\\n \\n $L^\\\\infty$\\n estimates for complex Hessian equations on transverse Kähler manifolds\",\"authors\":\"P. Sivaram\",\"doi\":\"10.1112/blms.13150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note, the partial differential equation (PDE) approach of Guo–Phong–Tong and Guo–Phong–Tong–Wang adapted to prove an <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mi>∞</mi>\\n </msup>\\n <annotation>$L^\\\\infty$</annotation>\\n </semantics></math> estimate for transverse complex Monge–Ampère equations on homologically orientable transverse Kähler manifolds. As an application, a purely PDE-based proof of the regularity of Calabi–Yau cone metrics on <span></span><math>\\n <semantics>\\n <mi>Q</mi>\\n <annotation>$\\\\mathbb {Q}$</annotation>\\n </semantics></math>-Gorenstein <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$\\\\mathbb {T}$</annotation>\\n </semantics></math>-varieties is obtained.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 11\",\"pages\":\"3542-3564\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13150\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13150","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇论文中,王国芳和王国芳-同方的偏微分方程(PDE)方法证明了在同源可定向横向凯勒流形上的横向复蒙哥-安培方程的 L ∞ $L\infty$ 估计值。作为应用,得到了 Q $\mathbb {Q}$ -Gorenstein T $\mathbb {T}$ - varieties 上 Calabi-Yau cone metrics 正则性的纯 PDE 证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the PDE approach to the L ∞ $L^\infty$ estimates for complex Hessian equations on transverse Kähler manifolds

In this note, the partial differential equation (PDE) approach of Guo–Phong–Tong and Guo–Phong–Tong–Wang adapted to prove an L $L^\infty$ estimate for transverse complex Monge–Ampère equations on homologically orientable transverse Kähler manifolds. As an application, a purely PDE-based proof of the regularity of Calabi–Yau cone metrics on Q $\mathbb {Q}$ -Gorenstein T $\mathbb {T}$ -varieties is obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信