{"title":"椭圆可除序列中的完全幂","authors":"Maryam Nowroozi, Samir Siksek","doi":"10.1112/blms.13135","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>/</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$E/\\mathbb {Q}$</annotation>\n </semantics></math> be an elliptic curve given by an integral Weierstrass equation. Let <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>∈</mo>\n <mi>E</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$P \\in E(\\mathbb {Q})$</annotation>\n </semantics></math> be a point of infinite order, and let <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$(B_n)_{n\\geqslant 1}$</annotation>\n </semantics></math> be the elliptic divisibility sequence generated by <span></span><math>\n <semantics>\n <mi>P</mi>\n <annotation>$P$</annotation>\n </semantics></math>. This paper is concerned with a question posed in 2007 by Everest, Reynolds and Stevens: does <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$(B_n)_{n \\geqslant 1}$</annotation>\n </semantics></math> contain only finitely many perfect powers? We answer this question positively under the following three additional assumptions: \n\n </p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3331-3345"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13135","citationCount":"0","resultStr":"{\"title\":\"Perfect powers in elliptic divisibility sequences\",\"authors\":\"Maryam Nowroozi, Samir Siksek\",\"doi\":\"10.1112/blms.13135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mo>/</mo>\\n <mi>Q</mi>\\n </mrow>\\n <annotation>$E/\\\\mathbb {Q}$</annotation>\\n </semantics></math> be an elliptic curve given by an integral Weierstrass equation. Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>∈</mo>\\n <mi>E</mi>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$P \\\\in E(\\\\mathbb {Q})$</annotation>\\n </semantics></math> be a point of infinite order, and let <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>B</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <annotation>$(B_n)_{n\\\\geqslant 1}$</annotation>\\n </semantics></math> be the elliptic divisibility sequence generated by <span></span><math>\\n <semantics>\\n <mi>P</mi>\\n <annotation>$P$</annotation>\\n </semantics></math>. This paper is concerned with a question posed in 2007 by Everest, Reynolds and Stevens: does <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>B</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <annotation>$(B_n)_{n \\\\geqslant 1}$</annotation>\\n </semantics></math> contain only finitely many perfect powers? We answer this question positively under the following three additional assumptions: \\n\\n </p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 11\",\"pages\":\"3331-3345\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13135\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13135\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13135","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 E / Q $E/\mathbb {Q}$ 是由韦尔斯特拉斯积分方程给出的椭圆曲线。让 P ∈ E ( Q ) $P \in E(\mathbb {Q})$ 是一个无穷阶点,让 ( B n ) n ⩾ 1 $(B_n)_{n\geqslant 1}$ 是由 P $P$ 产生的椭圆可分序列。本文关注 Everest, Reynolds 和 Stevens 于 2007 年提出的一个问题:( B n ) n ⩾ 1 $(B_n)_{n \geqslant 1}$ 是否只包含有限多个完全幂?在以下三个附加假设下,我们可以肯定地回答这个问题:
Let be an elliptic curve given by an integral Weierstrass equation. Let be a point of infinite order, and let be the elliptic divisibility sequence generated by . This paper is concerned with a question posed in 2007 by Everest, Reynolds and Stevens: does contain only finitely many perfect powers? We answer this question positively under the following three additional assumptions: