树的色度对称函数和多项式不变式

IF 0.8 3区 数学 Q2 MATHEMATICS
José Aliste-Prieto, Jeremy L. Martin, Jennifer D. Wagner, José Zamora
{"title":"树的色度对称函数和多项式不变式","authors":"José Aliste-Prieto,&nbsp;Jeremy L. Martin,&nbsp;Jennifer D. Wagner,&nbsp;José Zamora","doi":"10.1112/blms.13144","DOIUrl":null,"url":null,"abstract":"<p>Stanley asked whether a tree is determined up to isomorphism by its chromatic symmetric function. We approach Stanley's problem by studying the relationship between the chromatic symmetric function and other invariants. First, we prove Crew's conjecture that the chromatic symmetric function of a tree determines its generalized degree sequence, which enumerates vertex subsets by cardinality and the numbers of internal and external edges. Second, we prove that the restriction of the generalized degree sequence to subtrees contains exactly the same information as the subtree polynomial, which enumerates subtrees by cardinality and number of leaves. Third, we construct arbitrarily large families of trees sharing the same subtree polynomial, proving and generalizing a conjecture of Eisenstat and Gordon.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3452-3476"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chromatic symmetric functions and polynomial invariants of trees\",\"authors\":\"José Aliste-Prieto,&nbsp;Jeremy L. Martin,&nbsp;Jennifer D. Wagner,&nbsp;José Zamora\",\"doi\":\"10.1112/blms.13144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stanley asked whether a tree is determined up to isomorphism by its chromatic symmetric function. We approach Stanley's problem by studying the relationship between the chromatic symmetric function and other invariants. First, we prove Crew's conjecture that the chromatic symmetric function of a tree determines its generalized degree sequence, which enumerates vertex subsets by cardinality and the numbers of internal and external edges. Second, we prove that the restriction of the generalized degree sequence to subtrees contains exactly the same information as the subtree polynomial, which enumerates subtrees by cardinality and number of leaves. Third, we construct arbitrarily large families of trees sharing the same subtree polynomial, proving and generalizing a conjecture of Eisenstat and Gordon.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 11\",\"pages\":\"3452-3476\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13144\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13144","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

斯坦利提出的问题是,一棵树是否由其色度对称函数决定同构。我们通过研究色度对称函数和其他不变式之间的关系来解决斯坦利的问题。首先,我们证明了克鲁的猜想,即一棵树的色度对称函数决定了它的广义度序列,而广义度序列是通过心率和内外边的数量来枚举顶点子集的。其次,我们证明了广义度序列对子树的限制包含了与子树多项式完全相同的信息,子树多项式通过心率和叶子数来列举子树。第三,我们构建了共享相同子树多项式的任意大的树族,证明并推广了艾森斯塔特和戈登的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chromatic symmetric functions and polynomial invariants of trees

Stanley asked whether a tree is determined up to isomorphism by its chromatic symmetric function. We approach Stanley's problem by studying the relationship between the chromatic symmetric function and other invariants. First, we prove Crew's conjecture that the chromatic symmetric function of a tree determines its generalized degree sequence, which enumerates vertex subsets by cardinality and the numbers of internal and external edges. Second, we prove that the restriction of the generalized degree sequence to subtrees contains exactly the same information as the subtree polynomial, which enumerates subtrees by cardinality and number of leaves. Third, we construct arbitrarily large families of trees sharing the same subtree polynomial, proving and generalizing a conjecture of Eisenstat and Gordon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信