{"title":"肖特基空间的循环-肖特基层","authors":"Rubén A. Hidalgo, Milagros Izquierdo","doi":"10.1112/blms.13141","DOIUrl":null,"url":null,"abstract":"<p>Schottky space <span></span><math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>g</mi>\n </msub>\n <annotation>${\\mathcal {S}}_{g}$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$g \\geqslant 2$</annotation>\n </semantics></math> is an integer, is a connected complex orbifold of dimension <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mo>(</mo>\n <mi>g</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$3(g-1)$</annotation>\n </semantics></math>; it provides a parametrization of the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>PSL</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\rm PSL}_{2}({\\mathbb {C}})$</annotation>\n </semantics></math>-conjugacy classes of Schottky groups <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> of rank <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math>. The branch locus <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>B</mi>\n <mi>g</mi>\n </msub>\n <mo>⊂</mo>\n <msub>\n <mi>S</mi>\n <mi>g</mi>\n </msub>\n </mrow>\n <annotation>${\\mathcal {B}}_{g} \\subset {\\mathcal {S}}_{g}$</annotation>\n </semantics></math>, consisting of those conjugacy classes of Schottky groups being a finite index proper normal subgroup of some Kleinian group, is known to be connected. If <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>[</mo>\n <mi>Γ</mi>\n <mo>]</mo>\n </mrow>\n <mo>∈</mo>\n <msub>\n <mi>B</mi>\n <mi>g</mi>\n </msub>\n </mrow>\n <annotation>$[\\Gamma] \\in {\\mathcal {B}}_{g}$</annotation>\n </semantics></math>, then there is a Kleinian group <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> containing <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> as a normal subgroup of index some prime integer <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$p \\geqslant 2$</annotation>\n </semantics></math>. The structural description, in terms of Klein–Maskit Combination Theorems, of such a group <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> is completely determined by a triple <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>,</mo>\n <mi>r</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(t,r,s)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>,</mo>\n <mi>r</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>⩾</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$t,r,s \\geqslant 0$</annotation>\n </semantics></math> are integers such that <span></span><math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>=</mo>\n <mi>p</mi>\n <mo>(</mo>\n <mi>t</mi>\n <mo>+</mo>\n <mi>r</mi>\n <mo>+</mo>\n <mi>s</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n <mo>+</mo>\n <mn>1</mn>\n <mo>−</mo>\n <mi>r</mi>\n </mrow>\n <annotation>$g=p(t+r+s-1)+1-r$</annotation>\n </semantics></math>. For each such tuple <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>g</mi>\n <mo>,</mo>\n <mi>p</mi>\n <mo>;</mo>\n <mi>t</mi>\n <mo>,</mo>\n <mi>r</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(g,p;t,r,s)$</annotation>\n </semantics></math>, there is a corresponding cyclic-Schottky stratum <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mrow>\n <mo>(</mo>\n <mi>g</mi>\n <mo>,</mo>\n <mi>p</mi>\n <mo>;</mo>\n <mi>t</mi>\n <mo>,</mo>\n <mi>r</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>)</mo>\n </mrow>\n <mo>⊂</mo>\n <msub>\n <mi>B</mi>\n <mi>g</mi>\n </msub>\n </mrow>\n <annotation>$F(g,p;t,r,s) \\subset {\\mathcal {B}}_{g}$</annotation>\n </semantics></math>. It is known that <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>(</mo>\n <mi>g</mi>\n <mo>,</mo>\n <mn>2</mn>\n <mo>;</mo>\n <mi>t</mi>\n <mo>,</mo>\n <mi>r</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$F(g,2;t,r,s)$</annotation>\n </semantics></math> is connected. In this paper, for <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$p \\geqslant 3$</annotation>\n </semantics></math>, we study the connectivity of these <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>(</mo>\n <mi>g</mi>\n <mo>,</mo>\n <mi>p</mi>\n <mo>;</mo>\n <mi>t</mi>\n <mo>,</mo>\n <mi>r</mi>\n <mo>,</mo>\n <mi>s</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$F(g,p;t,r,s)$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3412-3427"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13141","citationCount":"0","resultStr":"{\"title\":\"Cyclic-Schottky strata of Schottky space\",\"authors\":\"Rubén A. Hidalgo, Milagros Izquierdo\",\"doi\":\"10.1112/blms.13141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Schottky space <span></span><math>\\n <semantics>\\n <msub>\\n <mi>S</mi>\\n <mi>g</mi>\\n </msub>\\n <annotation>${\\\\mathcal {S}}_{g}$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$g \\\\geqslant 2$</annotation>\\n </semantics></math> is an integer, is a connected complex orbifold of dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n <mo>(</mo>\\n <mi>g</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$3(g-1)$</annotation>\\n </semantics></math>; it provides a parametrization of the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>PSL</mi>\\n <mn>2</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>C</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>${\\\\rm PSL}_{2}({\\\\mathbb {C}})$</annotation>\\n </semantics></math>-conjugacy classes of Schottky groups <span></span><math>\\n <semantics>\\n <mi>Γ</mi>\\n <annotation>$\\\\Gamma$</annotation>\\n </semantics></math> of rank <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math>. The branch locus <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>B</mi>\\n <mi>g</mi>\\n </msub>\\n <mo>⊂</mo>\\n <msub>\\n <mi>S</mi>\\n <mi>g</mi>\\n </msub>\\n </mrow>\\n <annotation>${\\\\mathcal {B}}_{g} \\\\subset {\\\\mathcal {S}}_{g}$</annotation>\\n </semantics></math>, consisting of those conjugacy classes of Schottky groups being a finite index proper normal subgroup of some Kleinian group, is known to be connected. If <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>[</mo>\\n <mi>Γ</mi>\\n <mo>]</mo>\\n </mrow>\\n <mo>∈</mo>\\n <msub>\\n <mi>B</mi>\\n <mi>g</mi>\\n </msub>\\n </mrow>\\n <annotation>$[\\\\Gamma] \\\\in {\\\\mathcal {B}}_{g}$</annotation>\\n </semantics></math>, then there is a Kleinian group <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> containing <span></span><math>\\n <semantics>\\n <mi>Γ</mi>\\n <annotation>$\\\\Gamma$</annotation>\\n </semantics></math> as a normal subgroup of index some prime integer <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$p \\\\geqslant 2$</annotation>\\n </semantics></math>. The structural description, in terms of Klein–Maskit Combination Theorems, of such a group <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> is completely determined by a triple <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>,</mo>\\n <mi>r</mi>\\n <mo>,</mo>\\n <mi>s</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(t,r,s)$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>,</mo>\\n <mi>r</mi>\\n <mo>,</mo>\\n <mi>s</mi>\\n <mo>⩾</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$t,r,s \\\\geqslant 0$</annotation>\\n </semantics></math> are integers such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n <mo>=</mo>\\n <mi>p</mi>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>+</mo>\\n <mi>r</mi>\\n <mo>+</mo>\\n <mi>s</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>−</mo>\\n <mi>r</mi>\\n </mrow>\\n <annotation>$g=p(t+r+s-1)+1-r$</annotation>\\n </semantics></math>. For each such tuple <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>g</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n <mo>;</mo>\\n <mi>t</mi>\\n <mo>,</mo>\\n <mi>r</mi>\\n <mo>,</mo>\\n <mi>s</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(g,p;t,r,s)$</annotation>\\n </semantics></math>, there is a corresponding cyclic-Schottky stratum <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>g</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n <mo>;</mo>\\n <mi>t</mi>\\n <mo>,</mo>\\n <mi>r</mi>\\n <mo>,</mo>\\n <mi>s</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>⊂</mo>\\n <msub>\\n <mi>B</mi>\\n <mi>g</mi>\\n </msub>\\n </mrow>\\n <annotation>$F(g,p;t,r,s) \\\\subset {\\\\mathcal {B}}_{g}$</annotation>\\n </semantics></math>. It is known that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n <mo>(</mo>\\n <mi>g</mi>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>;</mo>\\n <mi>t</mi>\\n <mo>,</mo>\\n <mi>r</mi>\\n <mo>,</mo>\\n <mi>s</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$F(g,2;t,r,s)$</annotation>\\n </semantics></math> is connected. In this paper, for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>⩾</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$p \\\\geqslant 3$</annotation>\\n </semantics></math>, we study the connectivity of these <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n <mo>(</mo>\\n <mi>g</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n <mo>;</mo>\\n <mi>t</mi>\\n <mo>,</mo>\\n <mi>r</mi>\\n <mo>,</mo>\\n <mi>s</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$F(g,p;t,r,s)$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 11\",\"pages\":\"3412-3427\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13141\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13141\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13141","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
已知 F ( g , 2 ; t , r , s ) $F(g,2;t,r,s)$ 是连通的。在本文中,对于 p ⩾ 3 $p \geqslant 3$,我们研究这些 F ( g , p ; t , r , s ) $F(g,p;t,r,s)$ 的连通性。
Schottky space , where is an integer, is a connected complex orbifold of dimension ; it provides a parametrization of the -conjugacy classes of Schottky groups of rank . The branch locus , consisting of those conjugacy classes of Schottky groups being a finite index proper normal subgroup of some Kleinian group, is known to be connected. If , then there is a Kleinian group containing as a normal subgroup of index some prime integer . The structural description, in terms of Klein–Maskit Combination Theorems, of such a group is completely determined by a triple , where are integers such that . For each such tuple , there is a corresponding cyclic-Schottky stratum . It is known that is connected. In this paper, for , we study the connectivity of these .