呋喃类和萜类化合物的夜间化学:与 NO3 自由基有关的温度依赖性动力学以及对反应机理的见解

IF 4.2 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Fatima Al Ali , Vincent Gaudion , Alexandre Tomas , Nicolas Houzel , Cécile Cœur , Manolis N. Romanias
{"title":"呋喃类和萜类化合物的夜间化学:与 NO3 自由基有关的温度依赖性动力学以及对反应机理的见解","authors":"Fatima Al Ali ,&nbsp;Vincent Gaudion ,&nbsp;Alexandre Tomas ,&nbsp;Nicolas Houzel ,&nbsp;Cécile Cœur ,&nbsp;Manolis N. Romanias","doi":"10.1016/j.atmosenv.2024.120898","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the gas phase reaction of NO<sub>3</sub> radical with three furanoids, furan (F), 2-methylfuran (2-MF) and 2,5-dimethylfuran (2,5-DMF) were investigated using a relative rate method in a temperature regulated atmospheric simulation chamber (THALAMOS). As part of this study, the temperature dependence of two monoterpenes, α-pinene (α-P) and 2-carene (2-C), that were used as reference molecules, is also reported. The kinetic measurements were performed in the range of 263–373 K, atmospheric pressure using zero air as bath gas. The reaction was followed using Selected ion flow tube mass spectrometry (SIFT-MS) to monitor in real time the mixing ratios of the investigated species. The corresponding Arrhenius expressions obtained were:</div><div><span><math><mrow><msub><mi>k</mi><mrow><mi>α</mi><mo>−</mo><mi>P</mi><mo>+</mo><mi>N</mi><mi>O</mi><mn>3</mn></mrow></msub><mrow><mo>(</mo><mrow><mn>263</mn><mo>−</mo><mn>378</mn><mspace></mspace><mi>K</mi></mrow><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><mn>1.32</mn><mo>±</mo><mn>0.16</mn></mrow><mo>)</mo></mrow><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>12</mn></mrow></msup><mo>×</mo><msup><mi>e</mi><mfrac><mrow><mn>462</mn><mo>±</mo><mn>70</mn></mrow><mi>T</mi></mfrac></msup><mspace></mspace><msup><mtext>cm</mtext><mn>3</mn></msup><mspace></mspace><msup><mtext>molecule</mtext><mrow><mo>‐</mo><mo>1</mo></mrow></msup><mspace></mspace><msup><mi>s</mi><mrow><mo>‐</mo><mn>1</mn></mrow></msup></mrow></math></span>.</div><div><span><math><msub><mi>k</mi><mrow><mn>2</mn><mo>−</mo><mi>C</mi><mo>+</mo><mi>N</mi><mi>O</mi><mn>3</mn></mrow></msub><mfenced><mrow><mn>296</mn><mspace></mspace><mo>–</mo><mspace></mspace><mn>433</mn><mspace></mspace><mi>K</mi></mrow></mfenced><mo>=</mo><mfenced><mrow><mn>8.77</mn><mo>±</mo><mn>2</mn><mo>.</mo><mn>71</mn></mrow></mfenced><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>13</mn></mrow></msup><mo>×</mo><msup><mi>e</mi><mfrac><mrow><mn>904</mn><mo>±</mo><mn>96</mn></mrow><mi>T</mi></mfrac></msup><mspace></mspace><msup><mtext>cm</mtext><mn>3</mn></msup><mspace></mspace><msup><mtext>molecule</mtext><mrow><mo>‐</mo><mo>1</mo></mrow></msup><mspace></mspace><msup><mi>s</mi><mrow><mo>‐</mo><mo>1</mo></mrow></msup></math></span>.</div><div><span><math><msub><mi>k</mi><mrow><mi>F</mi><mo>+</mo><mi>N</mi><mi>O</mi><mn>3</mn></mrow></msub><mfenced><mrow><mn>263</mn><mo>−</mo><mn>353</mn><mspace></mspace><mi>K</mi></mrow></mfenced><mo>=</mo><mfenced><mrow><mn>7.55</mn><mo>±</mo><mn>1</mn><mo>.</mo><mn>96</mn></mrow></mfenced><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>13</mn></mrow></msup><mo>×</mo><msup><mi>e</mi><mfrac><mfenced><mrow><mn>254</mn><mo>±</mo><mn>79</mn></mrow></mfenced><mi>T</mi></mfrac></msup><mspace></mspace><msup><mtext>cm</mtext><mn>3</mn></msup><mspace></mspace><msup><mtext>molecule</mtext><mrow><mo>‐</mo><mo>1</mo></mrow></msup><mspace></mspace><msup><mi>s</mi><mrow><mo>‐</mo><mo>1</mo></mrow></msup></math></span>.</div><div><span><math><msub><mi>k</mi><mrow><mn>2</mn><mo>−</mo><mi>M</mi><mi>F</mi><mo>+</mo><mi>N</mi><mi>O</mi><mn>3</mn></mrow></msub><mfenced><mrow><mn>263</mn><mo>−</mo><mn>373</mn><mspace></mspace><mi>K</mi></mrow></mfenced><mo>=</mo><mfenced><mrow><mn>7.76</mn><mo>±</mo><mn>2</mn><mo>.</mo><mn>62</mn></mrow></mfenced><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>13</mn></mrow></msup><mo>×</mo><msup><mi>e</mi><mfrac><mrow><mn>922</mn><mo>±</mo><mn>262</mn></mrow><mi>T</mi></mfrac></msup><mspace></mspace><msup><mtext>cm</mtext><mn>3</mn></msup><mspace></mspace><msup><mtext>molecule</mtext><mrow><mo>‐</mo><mo>1</mo></mrow></msup><mspace></mspace><msup><mi>s</mi><mrow><mo>‐</mo><mo>1</mo></mrow></msup></math></span>.</div><div><span><math><msub><mi>k</mi><mrow><mn>2</mn><mo>,</mo><mn>5</mn><mo>−</mo><mi>D</mi><mi>M</mi><mi>F</mi><mo>+</mo><mi>N</mi><mi>O</mi><mn>3</mn></mrow></msub><mfenced><mrow><mn>298</mn><mspace></mspace><mo>–</mo><mspace></mspace><mn>353</mn><mspace></mspace><mi>K</mi></mrow></mfenced><mo>=</mo><mfenced><mrow><mn>2.58</mn><mo>±</mo><mn>0.77</mn></mrow></mfenced><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>13</mn></mrow></msup><mo>×</mo><msup><mi>e</mi><mfrac><mrow><mn>1692</mn><mo>±</mo><mn>136</mn></mrow><mi>T</mi></mfrac></msup><mspace></mspace><msup><mtext>cm</mtext><mn>3</mn></msup><mspace></mspace><msup><mtext>molecule</mtext><mrow><mo>‐</mo><mo>1</mo></mrow></msup><mspace></mspace><msup><mi>s</mi><mrow><mo>‐</mo><mo>1</mo></mrow></msup></math></span>.</div><div>Where the estimated uncertainties include the 1σ precision of the fit and the estimated uncertainty in the precision of the Arhenius fit of the reference compound. In the case of furanoids, the negative temperature-dependence of the rate coefficients shows that the reaction mechanism is complex, indicating that the reaction involves the formation of an adduct that could lead either to NO<sub>3</sub> addition to the double bond, as well as, in the case of 2-MF and 2,5-DMF, the H-abstraction from the methyl group attached to the ring. In addition to the kinetics measurements, the major products formed from the reaction of furan and 2,5-DMF with NO<sub>3</sub> were studied. The two identified products from the reaction of furan with NO<sub>3</sub>, were 3H-furan-2-one (C<sub>4</sub>H<sub>4</sub>O<sub>2</sub>) and 2-butenedial (C<sub>4</sub>H<sub>4</sub>O<sub>2</sub>), formed by NO<sub>3</sub> addition to the double bond of the furan ring. 3-Hexene-2,5-dione (C<sub>6</sub>H<sub>8</sub>O<sub>2</sub>) and 5-methylfurfural (C<sub>6</sub>H<sub>6</sub>O<sub>2</sub>) are the two major products of 2,5-DMF reaction with NO<sub>3</sub>, linked to the addition and abstraction pathways, respectively. Considering that 5-methylfurfural is the only primary product of the H elimination pathway of 2,5-DMF, the determination of its formation yields as a function of temperature, allowed us to extract the temperature dependence of the rate coefficients of the abstraction and addition pathways.</div><div>Overall, the NO<sub>3</sub> oxidation of the studied furanoids, is expected to be the dominant tropospheric loss process, in the studied temperature range.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"340 ","pages":"Article 120898"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nighttime chemistry of furanoids and terpenes: Temperature dependent kinetics with NO3 radicals and insights into the reaction mechanism\",\"authors\":\"Fatima Al Ali ,&nbsp;Vincent Gaudion ,&nbsp;Alexandre Tomas ,&nbsp;Nicolas Houzel ,&nbsp;Cécile Cœur ,&nbsp;Manolis N. Romanias\",\"doi\":\"10.1016/j.atmosenv.2024.120898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, the gas phase reaction of NO<sub>3</sub> radical with three furanoids, furan (F), 2-methylfuran (2-MF) and 2,5-dimethylfuran (2,5-DMF) were investigated using a relative rate method in a temperature regulated atmospheric simulation chamber (THALAMOS). As part of this study, the temperature dependence of two monoterpenes, α-pinene (α-P) and 2-carene (2-C), that were used as reference molecules, is also reported. The kinetic measurements were performed in the range of 263–373 K, atmospheric pressure using zero air as bath gas. The reaction was followed using Selected ion flow tube mass spectrometry (SIFT-MS) to monitor in real time the mixing ratios of the investigated species. The corresponding Arrhenius expressions obtained were:</div><div><span><math><mrow><msub><mi>k</mi><mrow><mi>α</mi><mo>−</mo><mi>P</mi><mo>+</mo><mi>N</mi><mi>O</mi><mn>3</mn></mrow></msub><mrow><mo>(</mo><mrow><mn>263</mn><mo>−</mo><mn>378</mn><mspace></mspace><mi>K</mi></mrow><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><mn>1.32</mn><mo>±</mo><mn>0.16</mn></mrow><mo>)</mo></mrow><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>12</mn></mrow></msup><mo>×</mo><msup><mi>e</mi><mfrac><mrow><mn>462</mn><mo>±</mo><mn>70</mn></mrow><mi>T</mi></mfrac></msup><mspace></mspace><msup><mtext>cm</mtext><mn>3</mn></msup><mspace></mspace><msup><mtext>molecule</mtext><mrow><mo>‐</mo><mo>1</mo></mrow></msup><mspace></mspace><msup><mi>s</mi><mrow><mo>‐</mo><mn>1</mn></mrow></msup></mrow></math></span>.</div><div><span><math><msub><mi>k</mi><mrow><mn>2</mn><mo>−</mo><mi>C</mi><mo>+</mo><mi>N</mi><mi>O</mi><mn>3</mn></mrow></msub><mfenced><mrow><mn>296</mn><mspace></mspace><mo>–</mo><mspace></mspace><mn>433</mn><mspace></mspace><mi>K</mi></mrow></mfenced><mo>=</mo><mfenced><mrow><mn>8.77</mn><mo>±</mo><mn>2</mn><mo>.</mo><mn>71</mn></mrow></mfenced><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>13</mn></mrow></msup><mo>×</mo><msup><mi>e</mi><mfrac><mrow><mn>904</mn><mo>±</mo><mn>96</mn></mrow><mi>T</mi></mfrac></msup><mspace></mspace><msup><mtext>cm</mtext><mn>3</mn></msup><mspace></mspace><msup><mtext>molecule</mtext><mrow><mo>‐</mo><mo>1</mo></mrow></msup><mspace></mspace><msup><mi>s</mi><mrow><mo>‐</mo><mo>1</mo></mrow></msup></math></span>.</div><div><span><math><msub><mi>k</mi><mrow><mi>F</mi><mo>+</mo><mi>N</mi><mi>O</mi><mn>3</mn></mrow></msub><mfenced><mrow><mn>263</mn><mo>−</mo><mn>353</mn><mspace></mspace><mi>K</mi></mrow></mfenced><mo>=</mo><mfenced><mrow><mn>7.55</mn><mo>±</mo><mn>1</mn><mo>.</mo><mn>96</mn></mrow></mfenced><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>13</mn></mrow></msup><mo>×</mo><msup><mi>e</mi><mfrac><mfenced><mrow><mn>254</mn><mo>±</mo><mn>79</mn></mrow></mfenced><mi>T</mi></mfrac></msup><mspace></mspace><msup><mtext>cm</mtext><mn>3</mn></msup><mspace></mspace><msup><mtext>molecule</mtext><mrow><mo>‐</mo><mo>1</mo></mrow></msup><mspace></mspace><msup><mi>s</mi><mrow><mo>‐</mo><mo>1</mo></mrow></msup></math></span>.</div><div><span><math><msub><mi>k</mi><mrow><mn>2</mn><mo>−</mo><mi>M</mi><mi>F</mi><mo>+</mo><mi>N</mi><mi>O</mi><mn>3</mn></mrow></msub><mfenced><mrow><mn>263</mn><mo>−</mo><mn>373</mn><mspace></mspace><mi>K</mi></mrow></mfenced><mo>=</mo><mfenced><mrow><mn>7.76</mn><mo>±</mo><mn>2</mn><mo>.</mo><mn>62</mn></mrow></mfenced><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>13</mn></mrow></msup><mo>×</mo><msup><mi>e</mi><mfrac><mrow><mn>922</mn><mo>±</mo><mn>262</mn></mrow><mi>T</mi></mfrac></msup><mspace></mspace><msup><mtext>cm</mtext><mn>3</mn></msup><mspace></mspace><msup><mtext>molecule</mtext><mrow><mo>‐</mo><mo>1</mo></mrow></msup><mspace></mspace><msup><mi>s</mi><mrow><mo>‐</mo><mo>1</mo></mrow></msup></math></span>.</div><div><span><math><msub><mi>k</mi><mrow><mn>2</mn><mo>,</mo><mn>5</mn><mo>−</mo><mi>D</mi><mi>M</mi><mi>F</mi><mo>+</mo><mi>N</mi><mi>O</mi><mn>3</mn></mrow></msub><mfenced><mrow><mn>298</mn><mspace></mspace><mo>–</mo><mspace></mspace><mn>353</mn><mspace></mspace><mi>K</mi></mrow></mfenced><mo>=</mo><mfenced><mrow><mn>2.58</mn><mo>±</mo><mn>0.77</mn></mrow></mfenced><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>13</mn></mrow></msup><mo>×</mo><msup><mi>e</mi><mfrac><mrow><mn>1692</mn><mo>±</mo><mn>136</mn></mrow><mi>T</mi></mfrac></msup><mspace></mspace><msup><mtext>cm</mtext><mn>3</mn></msup><mspace></mspace><msup><mtext>molecule</mtext><mrow><mo>‐</mo><mo>1</mo></mrow></msup><mspace></mspace><msup><mi>s</mi><mrow><mo>‐</mo><mo>1</mo></mrow></msup></math></span>.</div><div>Where the estimated uncertainties include the 1σ precision of the fit and the estimated uncertainty in the precision of the Arhenius fit of the reference compound. In the case of furanoids, the negative temperature-dependence of the rate coefficients shows that the reaction mechanism is complex, indicating that the reaction involves the formation of an adduct that could lead either to NO<sub>3</sub> addition to the double bond, as well as, in the case of 2-MF and 2,5-DMF, the H-abstraction from the methyl group attached to the ring. In addition to the kinetics measurements, the major products formed from the reaction of furan and 2,5-DMF with NO<sub>3</sub> were studied. The two identified products from the reaction of furan with NO<sub>3</sub>, were 3H-furan-2-one (C<sub>4</sub>H<sub>4</sub>O<sub>2</sub>) and 2-butenedial (C<sub>4</sub>H<sub>4</sub>O<sub>2</sub>), formed by NO<sub>3</sub> addition to the double bond of the furan ring. 3-Hexene-2,5-dione (C<sub>6</sub>H<sub>8</sub>O<sub>2</sub>) and 5-methylfurfural (C<sub>6</sub>H<sub>6</sub>O<sub>2</sub>) are the two major products of 2,5-DMF reaction with NO<sub>3</sub>, linked to the addition and abstraction pathways, respectively. Considering that 5-methylfurfural is the only primary product of the H elimination pathway of 2,5-DMF, the determination of its formation yields as a function of temperature, allowed us to extract the temperature dependence of the rate coefficients of the abstraction and addition pathways.</div><div>Overall, the NO<sub>3</sub> oxidation of the studied furanoids, is expected to be the dominant tropospheric loss process, in the studied temperature range.</div></div>\",\"PeriodicalId\":250,\"journal\":{\"name\":\"Atmospheric Environment\",\"volume\":\"340 \",\"pages\":\"Article 120898\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1352231024005739\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231024005739","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究在温度调节大气模拟室(THALAMOS)中采用相对速率法研究了 NO3 自由基与三种呋喃类化合物(呋喃 (F)、2-甲基呋喃 (2-MF) 和 2,5 二甲基呋喃 (2,5-DMF))的气相反应。作为本研究的一部分,还报告了作为参考分子的两种单萜烯类化合物 α-蒎烯(α-P)和 2-蒈烯(2-C)的温度依赖性。动力学测量在 263-373 K、大气压范围内进行,使用零空气作为浴气。使用选择离子流管质谱法(SIFT-MS)对反应进行跟踪,实时监测所研究物种的混合比。得到的相应阿伦尼乌斯表达式为:kα-P+NO3(263-378K)=(1.32±0.16)×10-12×e462±70Tcm3molecule-1s-1.k2-C+NO3296-433K=8.77±2.71×10−13×e904±96Tcm3molecule‐1s‐1.kF+NO3263−353K=7.55±1.96×10−13×e254±79Tcm3molecule‐1s‐1.k2−MF+NO3263−373K=7.其中估计的不确定性包括拟合精度的 1σ 和参考化合物 Arhenius 拟合精度的估计不确定性。就呋喃类化合物而言,速率系数与温度呈负相关,这表明反应机理十分复杂,既可能形成加合物,导致双键上的 NO3 加成,也可能导致 2-MF 和 2,5-DMF 从环上的甲基上萃取 H。除了动力学测量之外,还研究了呋喃和 2,5-DMF 与 NO3 反应生成的主要产物。呋喃与 NO3 反应生成的两种确定产物是 3H-呋喃-2-酮(C4H4O2)和 2-丁烯醛(C4H4O2),它们是通过 NO3 与呋喃环的双键加成而形成的。3-己烯-2,5-二酮(C6H8O2)和 5-甲基糠醛(C6H6O2)是 2,5-DMF 与 NO3 反应的两种主要产物,分别与加成和抽取途径有关。考虑到 5-甲基糠醛是 2,5-DMF H 消解途径的唯一主要产物,测定其形成率与温度的函数关系,使我们能够提取出抽取和加成途径的速率系数的温度依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nighttime chemistry of furanoids and terpenes: Temperature dependent kinetics with NO3 radicals and insights into the reaction mechanism
In this study, the gas phase reaction of NO3 radical with three furanoids, furan (F), 2-methylfuran (2-MF) and 2,5-dimethylfuran (2,5-DMF) were investigated using a relative rate method in a temperature regulated atmospheric simulation chamber (THALAMOS). As part of this study, the temperature dependence of two monoterpenes, α-pinene (α-P) and 2-carene (2-C), that were used as reference molecules, is also reported. The kinetic measurements were performed in the range of 263–373 K, atmospheric pressure using zero air as bath gas. The reaction was followed using Selected ion flow tube mass spectrometry (SIFT-MS) to monitor in real time the mixing ratios of the investigated species. The corresponding Arrhenius expressions obtained were:
kαP+NO3(263378K)=(1.32±0.16)×1012×e462±70Tcm3molecule1s1.
k2C+NO3296433K=8.77±2.71×1013×e904±96Tcm3molecule1s1.
kF+NO3263353K=7.55±1.96×1013×e254±79Tcm3molecule1s1.
k2MF+NO3263373K=7.76±2.62×1013×e922±262Tcm3molecule1s1.
k2,5DMF+NO3298353K=2.58±0.77×1013×e1692±136Tcm3molecule1s1.
Where the estimated uncertainties include the 1σ precision of the fit and the estimated uncertainty in the precision of the Arhenius fit of the reference compound. In the case of furanoids, the negative temperature-dependence of the rate coefficients shows that the reaction mechanism is complex, indicating that the reaction involves the formation of an adduct that could lead either to NO3 addition to the double bond, as well as, in the case of 2-MF and 2,5-DMF, the H-abstraction from the methyl group attached to the ring. In addition to the kinetics measurements, the major products formed from the reaction of furan and 2,5-DMF with NO3 were studied. The two identified products from the reaction of furan with NO3, were 3H-furan-2-one (C4H4O2) and 2-butenedial (C4H4O2), formed by NO3 addition to the double bond of the furan ring. 3-Hexene-2,5-dione (C6H8O2) and 5-methylfurfural (C6H6O2) are the two major products of 2,5-DMF reaction with NO3, linked to the addition and abstraction pathways, respectively. Considering that 5-methylfurfural is the only primary product of the H elimination pathway of 2,5-DMF, the determination of its formation yields as a function of temperature, allowed us to extract the temperature dependence of the rate coefficients of the abstraction and addition pathways.
Overall, the NO3 oxidation of the studied furanoids, is expected to be the dominant tropospheric loss process, in the studied temperature range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Environment
Atmospheric Environment 环境科学-环境科学
CiteScore
9.40
自引率
8.00%
发文量
458
审稿时长
53 days
期刊介绍: Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信