{"title":"用于烹饪废水处理的单坡太阳能蒸馏器实验研究","authors":"Karthick Uthappan , Subramanian Murugesan , Ganesh Karuppasamy , Karthickmunisamy Thangavel","doi":"10.1016/j.solcom.2024.100095","DOIUrl":null,"url":null,"abstract":"<div><div>Solar still desalination (SD) offers a sustainable method for purifying contaminated water, despite its productivity limitations. This study proposes an effective treatment process for culinary wastewater (CWW), multilayer-filtered culinary wastewater (MFCWW), and borewell water. We conducted a comprehensive experimental analysis comparing key SD characteristics, including evaporative heat transfer, efficiency, productivity, exergy, and water quality parameters, across these water sources. Our findings reveal that integrating multilayer filtration with CWW significantly improves efficiency, productivity, turbidity reduction, and hardness removal compared with untreated CWW. Notably, MFCWW has emerged as the most promising modification, demonstrating enhanced solar still performance over conventional SD processes. This study highlights the potential of combining multilayer filtration with solar desalination as an innovative approach to improve water purification outcomes, particularly for culinary wastewater treatment.</div></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"12 ","pages":"Article 100095"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of single slope solar still for culinary wastewater treatment\",\"authors\":\"Karthick Uthappan , Subramanian Murugesan , Ganesh Karuppasamy , Karthickmunisamy Thangavel\",\"doi\":\"10.1016/j.solcom.2024.100095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solar still desalination (SD) offers a sustainable method for purifying contaminated water, despite its productivity limitations. This study proposes an effective treatment process for culinary wastewater (CWW), multilayer-filtered culinary wastewater (MFCWW), and borewell water. We conducted a comprehensive experimental analysis comparing key SD characteristics, including evaporative heat transfer, efficiency, productivity, exergy, and water quality parameters, across these water sources. Our findings reveal that integrating multilayer filtration with CWW significantly improves efficiency, productivity, turbidity reduction, and hardness removal compared with untreated CWW. Notably, MFCWW has emerged as the most promising modification, demonstrating enhanced solar still performance over conventional SD processes. This study highlights the potential of combining multilayer filtration with solar desalination as an innovative approach to improve water purification outcomes, particularly for culinary wastewater treatment.</div></div>\",\"PeriodicalId\":101173,\"journal\":{\"name\":\"Solar Compass\",\"volume\":\"12 \",\"pages\":\"Article 100095\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Compass\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772940024000298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Compass","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772940024000298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental investigation of single slope solar still for culinary wastewater treatment
Solar still desalination (SD) offers a sustainable method for purifying contaminated water, despite its productivity limitations. This study proposes an effective treatment process for culinary wastewater (CWW), multilayer-filtered culinary wastewater (MFCWW), and borewell water. We conducted a comprehensive experimental analysis comparing key SD characteristics, including evaporative heat transfer, efficiency, productivity, exergy, and water quality parameters, across these water sources. Our findings reveal that integrating multilayer filtration with CWW significantly improves efficiency, productivity, turbidity reduction, and hardness removal compared with untreated CWW. Notably, MFCWW has emerged as the most promising modification, demonstrating enhanced solar still performance over conventional SD processes. This study highlights the potential of combining multilayer filtration with solar desalination as an innovative approach to improve water purification outcomes, particularly for culinary wastewater treatment.