通过格拉斯曼二次赋值实现鲁棒仿射点匹配

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Alexander Kolpakov , Michael Werman
{"title":"通过格拉斯曼二次赋值实现鲁棒仿射点匹配","authors":"Alexander Kolpakov ,&nbsp;Michael Werman","doi":"10.1016/j.patrec.2024.09.016","DOIUrl":null,"url":null,"abstract":"<div><div>Robust Affine Matching with Grassmannians (RoAM) is a new algorithm to perform affine registration of point clouds. The algorithm is based on minimizing the Frobenius distance between two elements of the Grassmannian. For this purpose, an indefinite relaxation of the Quadratic Assignment Problem (QAP) is used, and several approaches to affine feature matching are studied and compared. Experiments demonstrate that RoAM is more robust to noise and point discrepancy than previous methods.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"186 ","pages":"Pages 265-271"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust affine point matching via quadratic assignment on Grassmannians\",\"authors\":\"Alexander Kolpakov ,&nbsp;Michael Werman\",\"doi\":\"10.1016/j.patrec.2024.09.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Robust Affine Matching with Grassmannians (RoAM) is a new algorithm to perform affine registration of point clouds. The algorithm is based on minimizing the Frobenius distance between two elements of the Grassmannian. For this purpose, an indefinite relaxation of the Quadratic Assignment Problem (QAP) is used, and several approaches to affine feature matching are studied and compared. Experiments demonstrate that RoAM is more robust to noise and point discrepancy than previous methods.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"186 \",\"pages\":\"Pages 265-271\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524002794\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002794","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

用格拉斯曼进行鲁棒仿射匹配(RoAM)是一种对点云进行仿射配准的新算法。该算法基于最小化格拉斯曼两个元素之间的弗罗贝尼斯距离。为此,该算法使用了二次赋值问题(QAP)的不定期松弛,并对几种仿射特征匹配方法进行了研究和比较。实验证明,与之前的方法相比,RoAM 对噪声和点差异的鲁棒性更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust affine point matching via quadratic assignment on Grassmannians
Robust Affine Matching with Grassmannians (RoAM) is a new algorithm to perform affine registration of point clouds. The algorithm is based on minimizing the Frobenius distance between two elements of the Grassmannian. For this purpose, an indefinite relaxation of the Quadratic Assignment Problem (QAP) is used, and several approaches to affine feature matching are studied and compared. Experiments demonstrate that RoAM is more robust to noise and point discrepancy than previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信