Michael Itzkin, Margaret L. Palmsten, Mark L. Buckley, Justin J. Birchler, Legna M. Torres-Garcia
{"title":"开发决策树模型以预测运行和评估经验公式的不确定性","authors":"Michael Itzkin, Margaret L. Palmsten, Mark L. Buckley, Justin J. Birchler, Legna M. Torres-Garcia","doi":"10.1016/j.coastaleng.2024.104641","DOIUrl":null,"url":null,"abstract":"<div><div>The coastal zone is a dynamic region that can change rapidly and significantly with respect to the morphology of the beach and incoming wave conditions. Runup forecasts may be improved by adapting a dynamic approach that allows for different runup models to be implemented in response to changes in beach state. Accurately forecasting wave runup is critical to characterize exposure to coastal hazards and provide an early warning against potential erosion and inundation. Here, we developed a decision tree model to produce a weighted ensemble of existing runup models to predict 1.25 years of runup at Duck, North Carolina, USA. We then applied the calibrated decision tree model to reproduce observed runup during the DUNEX experiment in Pea Island, North Carolina, USA. We found that the decision tree approach yielded a prediction that was comparable or greater in accuracy (i.e. higher r<sup>2</sup>, lower RMSE) than the individual runup models. We also interrogated the decision tree predictions to determine how the individual models perform relative to each other and why certain models perform better than others under the same observed wave and beach conditions. We found that the decision tree approach drew on the processes represented in the individual models in the ensemble to produce a forecast that is accurate and explainable without relying on prior knowledge of the study site(s) or requiring manual adjustments beyond the initial model training.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"195 ","pages":"Article 104641"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a decision tree model to forecast runup and assess uncertainty in empirical formulations\",\"authors\":\"Michael Itzkin, Margaret L. Palmsten, Mark L. Buckley, Justin J. Birchler, Legna M. Torres-Garcia\",\"doi\":\"10.1016/j.coastaleng.2024.104641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The coastal zone is a dynamic region that can change rapidly and significantly with respect to the morphology of the beach and incoming wave conditions. Runup forecasts may be improved by adapting a dynamic approach that allows for different runup models to be implemented in response to changes in beach state. Accurately forecasting wave runup is critical to characterize exposure to coastal hazards and provide an early warning against potential erosion and inundation. Here, we developed a decision tree model to produce a weighted ensemble of existing runup models to predict 1.25 years of runup at Duck, North Carolina, USA. We then applied the calibrated decision tree model to reproduce observed runup during the DUNEX experiment in Pea Island, North Carolina, USA. We found that the decision tree approach yielded a prediction that was comparable or greater in accuracy (i.e. higher r<sup>2</sup>, lower RMSE) than the individual runup models. We also interrogated the decision tree predictions to determine how the individual models perform relative to each other and why certain models perform better than others under the same observed wave and beach conditions. We found that the decision tree approach drew on the processes represented in the individual models in the ensemble to produce a forecast that is accurate and explainable without relying on prior knowledge of the study site(s) or requiring manual adjustments beyond the initial model training.</div></div>\",\"PeriodicalId\":50996,\"journal\":{\"name\":\"Coastal Engineering\",\"volume\":\"195 \",\"pages\":\"Article 104641\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378383924001893\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924001893","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Developing a decision tree model to forecast runup and assess uncertainty in empirical formulations
The coastal zone is a dynamic region that can change rapidly and significantly with respect to the morphology of the beach and incoming wave conditions. Runup forecasts may be improved by adapting a dynamic approach that allows for different runup models to be implemented in response to changes in beach state. Accurately forecasting wave runup is critical to characterize exposure to coastal hazards and provide an early warning against potential erosion and inundation. Here, we developed a decision tree model to produce a weighted ensemble of existing runup models to predict 1.25 years of runup at Duck, North Carolina, USA. We then applied the calibrated decision tree model to reproduce observed runup during the DUNEX experiment in Pea Island, North Carolina, USA. We found that the decision tree approach yielded a prediction that was comparable or greater in accuracy (i.e. higher r2, lower RMSE) than the individual runup models. We also interrogated the decision tree predictions to determine how the individual models perform relative to each other and why certain models perform better than others under the same observed wave and beach conditions. We found that the decision tree approach drew on the processes represented in the individual models in the ensemble to produce a forecast that is accurate and explainable without relying on prior knowledge of the study site(s) or requiring manual adjustments beyond the initial model training.
期刊介绍:
Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.