Zhuonan Hou , Xinjun Zhang , Ruihong Wang , Tiantian Ma , Xintong Li , Su Chang , Yanying Han , Meidi Cheng , Jie Lu , Bo Wang , Yanhui Ye , Yuquan Wei
{"title":"西藏高山森林两年内沿海拔梯度的土壤微生物群落动态及其对垃圾分解的贡献","authors":"Zhuonan Hou , Xinjun Zhang , Ruihong Wang , Tiantian Ma , Xintong Li , Su Chang , Yanying Han , Meidi Cheng , Jie Lu , Bo Wang , Yanhui Ye , Yuquan Wei","doi":"10.1016/j.catena.2024.108516","DOIUrl":null,"url":null,"abstract":"<div><div>Soil microbial communities are crucial to drive litter decomposition and regulate carbon cycle for mitigating the effects of climate change. However, in alpine forest ecosystems, the relative importance of dynamic litter degradation and changes in abiotic factors across elevational mountain gradients in affecting soil microbial communities is little understood. In this study, five sites along elevation gradient (3500–4300 m) were set according to the distribution range of <em>Rhododendron simsii Planch</em> to investigate the changes in soil microbial community structure during litter decomposition process. Based on the two-year field litter burial experiment and soil microbial sequencing, our results revealed that the litter mass loss for two years at different elevations ranged from 37 % to 61 %, and lignin contributed the most to litter decomposition. Proteobacteria, Actinobacteria and Acidobacteria were the dominant bacteria, and the dominant fungal communities were Basidiomycota and Ascomycota, which played a major role in promoting lignocellulose decomposition. The similarity in soil microbial community structure and alpha diversity between elevations increased with the decomposition of litter. Correlation analysis showed that microbial Chao1 index, available potassium and pH significantly influenced the decomposition of litter. Soil microbial communities were mainly influenced by soil moisture, soil texture (clay + silt) and the content of carbon and nitrogen. Overall, the changes in the soil microbial community especially in alpine forests can be strongly affected by litter decomposition in turn, further regulating ecosystem functions and processes. More attention should be paid to global climate-sensitive and vulnerable areas, which are essential for soil ecological quality improvement.</div></div>","PeriodicalId":9801,"journal":{"name":"Catena","volume":"247 ","pages":"Article 108516"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soil microbial community dynamics and contribution to litter decomposition in two years in a Tibetan alpine forest along an elevational gradient\",\"authors\":\"Zhuonan Hou , Xinjun Zhang , Ruihong Wang , Tiantian Ma , Xintong Li , Su Chang , Yanying Han , Meidi Cheng , Jie Lu , Bo Wang , Yanhui Ye , Yuquan Wei\",\"doi\":\"10.1016/j.catena.2024.108516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil microbial communities are crucial to drive litter decomposition and regulate carbon cycle for mitigating the effects of climate change. However, in alpine forest ecosystems, the relative importance of dynamic litter degradation and changes in abiotic factors across elevational mountain gradients in affecting soil microbial communities is little understood. In this study, five sites along elevation gradient (3500–4300 m) were set according to the distribution range of <em>Rhododendron simsii Planch</em> to investigate the changes in soil microbial community structure during litter decomposition process. Based on the two-year field litter burial experiment and soil microbial sequencing, our results revealed that the litter mass loss for two years at different elevations ranged from 37 % to 61 %, and lignin contributed the most to litter decomposition. Proteobacteria, Actinobacteria and Acidobacteria were the dominant bacteria, and the dominant fungal communities were Basidiomycota and Ascomycota, which played a major role in promoting lignocellulose decomposition. The similarity in soil microbial community structure and alpha diversity between elevations increased with the decomposition of litter. Correlation analysis showed that microbial Chao1 index, available potassium and pH significantly influenced the decomposition of litter. Soil microbial communities were mainly influenced by soil moisture, soil texture (clay + silt) and the content of carbon and nitrogen. Overall, the changes in the soil microbial community especially in alpine forests can be strongly affected by litter decomposition in turn, further regulating ecosystem functions and processes. More attention should be paid to global climate-sensitive and vulnerable areas, which are essential for soil ecological quality improvement.</div></div>\",\"PeriodicalId\":9801,\"journal\":{\"name\":\"Catena\",\"volume\":\"247 \",\"pages\":\"Article 108516\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catena\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0341816224007136\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catena","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0341816224007136","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Soil microbial community dynamics and contribution to litter decomposition in two years in a Tibetan alpine forest along an elevational gradient
Soil microbial communities are crucial to drive litter decomposition and regulate carbon cycle for mitigating the effects of climate change. However, in alpine forest ecosystems, the relative importance of dynamic litter degradation and changes in abiotic factors across elevational mountain gradients in affecting soil microbial communities is little understood. In this study, five sites along elevation gradient (3500–4300 m) were set according to the distribution range of Rhododendron simsii Planch to investigate the changes in soil microbial community structure during litter decomposition process. Based on the two-year field litter burial experiment and soil microbial sequencing, our results revealed that the litter mass loss for two years at different elevations ranged from 37 % to 61 %, and lignin contributed the most to litter decomposition. Proteobacteria, Actinobacteria and Acidobacteria were the dominant bacteria, and the dominant fungal communities were Basidiomycota and Ascomycota, which played a major role in promoting lignocellulose decomposition. The similarity in soil microbial community structure and alpha diversity between elevations increased with the decomposition of litter. Correlation analysis showed that microbial Chao1 index, available potassium and pH significantly influenced the decomposition of litter. Soil microbial communities were mainly influenced by soil moisture, soil texture (clay + silt) and the content of carbon and nitrogen. Overall, the changes in the soil microbial community especially in alpine forests can be strongly affected by litter decomposition in turn, further regulating ecosystem functions and processes. More attention should be paid to global climate-sensitive and vulnerable areas, which are essential for soil ecological quality improvement.
期刊介绍:
Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment.
Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance.