开发三维打印的黄樟油腊米糕

IF 5.3 2区 农林科学 Q1 ENGINEERING, CHEMICAL
Zepeng Gu , Junlin Li , Qiyun Zhang , Hangyan Dan , Wenjuan Wu , Cheng Li , Zhengfeng Fang , Fahad Al-Asmari , Manal Y. Sameeh , Yuntao Liu , Zhen Zeng
{"title":"开发三维打印的黄樟油腊米糕","authors":"Zepeng Gu ,&nbsp;Junlin Li ,&nbsp;Qiyun Zhang ,&nbsp;Hangyan Dan ,&nbsp;Wenjuan Wu ,&nbsp;Cheng Li ,&nbsp;Zhengfeng Fang ,&nbsp;Fahad Al-Asmari ,&nbsp;Manal Y. Sameeh ,&nbsp;Yuntao Liu ,&nbsp;Zhen Zeng","doi":"10.1016/j.jfoodeng.2024.112354","DOIUrl":null,"url":null,"abstract":"<div><div>As an attractive choice for patients with celiac disease, scaling up production and innovating flavors are significant challenges for the development of traditional Sichuan snack, waxy rice cake. 3D food printing is an emerging technology that enables the production of food with the desired shape and structure. This study introduced two types of Zanthoxylum oil to enhance both the printability and quality of waxy rice cakes, aiming to achieve Sichuan-style taste through the Zanthoxylum oil's effect. The results showed that the waxy rice flour dough with Zanthoxylum oil exhibited shear thinning properties, with viscosity decreasing from 292.59 Pa s to 91.16 Pa s at a shear rate of 1 s⁻<sup>1</sup>, making it an ideal material for 3D printing. The addition of Zanthoxylum oil significantly enhanced water activity and hydrogen bonds in the dough system. Furthermore, the incorporation of red Zanthoxylum oil accelerated the dough maturation process. 3D printing and TPA results revealed that sticky rice cakes containing 8% and 12% Zanthoxylum oil exhibited optimal printing accuracy, with the 8% sample achieving 96.69% fidelity. After steaming, the waxy rice cake with 8% Zanthoxylum oil retained a height of 18.23 mm and a diameter of 31.74 mm, with a soft, sticky texture. In summary, the product with the addition of 8% red Zanthoxylum oil exhibited superior appearance and texture, making it suitable for 3D printing. This study is expected to realize the customized production of Sichuan-style waxy rice cake.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"388 ","pages":"Article 112354"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of 3D printed zanthoxylum oil waxy rice cake\",\"authors\":\"Zepeng Gu ,&nbsp;Junlin Li ,&nbsp;Qiyun Zhang ,&nbsp;Hangyan Dan ,&nbsp;Wenjuan Wu ,&nbsp;Cheng Li ,&nbsp;Zhengfeng Fang ,&nbsp;Fahad Al-Asmari ,&nbsp;Manal Y. Sameeh ,&nbsp;Yuntao Liu ,&nbsp;Zhen Zeng\",\"doi\":\"10.1016/j.jfoodeng.2024.112354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As an attractive choice for patients with celiac disease, scaling up production and innovating flavors are significant challenges for the development of traditional Sichuan snack, waxy rice cake. 3D food printing is an emerging technology that enables the production of food with the desired shape and structure. This study introduced two types of Zanthoxylum oil to enhance both the printability and quality of waxy rice cakes, aiming to achieve Sichuan-style taste through the Zanthoxylum oil's effect. The results showed that the waxy rice flour dough with Zanthoxylum oil exhibited shear thinning properties, with viscosity decreasing from 292.59 Pa s to 91.16 Pa s at a shear rate of 1 s⁻<sup>1</sup>, making it an ideal material for 3D printing. The addition of Zanthoxylum oil significantly enhanced water activity and hydrogen bonds in the dough system. Furthermore, the incorporation of red Zanthoxylum oil accelerated the dough maturation process. 3D printing and TPA results revealed that sticky rice cakes containing 8% and 12% Zanthoxylum oil exhibited optimal printing accuracy, with the 8% sample achieving 96.69% fidelity. After steaming, the waxy rice cake with 8% Zanthoxylum oil retained a height of 18.23 mm and a diameter of 31.74 mm, with a soft, sticky texture. In summary, the product with the addition of 8% red Zanthoxylum oil exhibited superior appearance and texture, making it suitable for 3D printing. This study is expected to realize the customized production of Sichuan-style waxy rice cake.</div></div>\",\"PeriodicalId\":359,\"journal\":{\"name\":\"Journal of Food Engineering\",\"volume\":\"388 \",\"pages\":\"Article 112354\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0260877424004205\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877424004205","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

作为乳糜泻患者的首选,扩大生产规模和创新口味是四川传统小吃腊味年糕发展面临的重大挑战。三维食品打印技术是一种新兴技术,可以生产出所需形状和结构的食品。本研究引入了两种黄樟油来提高腊味年糕的可打印性和品质,旨在通过黄樟油的作用实现川味年糕的口味。结果表明,添加了黄樟油的蜡质米粉面团具有剪切稀化特性,在剪切速率为 1 s-1 时,粘度从 292.59 Pa s 降至 91.16 Pa s,是理想的 3D 打印材料。在面团体系中添加红曲油能显著提高水活性和氢键。此外,红黄樟油的加入还加速了面团的成熟过程。三维打印和TPA结果表明,含有8%和12%红曲油的糯米糕具有最佳的打印精度,其中8%的样品达到了96.69%的保真度。含 8%黄樟油的蜡质年糕蒸熟后,高度为 18.23 毫米,直径为 31.74 毫米,口感软糯。总之,添加了 8%红曲油的产品外观和质地都非常出色,适合用于 3D 打印。本研究有望实现川味腊味年糕的定制化生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of 3D printed zanthoxylum oil waxy rice cake
As an attractive choice for patients with celiac disease, scaling up production and innovating flavors are significant challenges for the development of traditional Sichuan snack, waxy rice cake. 3D food printing is an emerging technology that enables the production of food with the desired shape and structure. This study introduced two types of Zanthoxylum oil to enhance both the printability and quality of waxy rice cakes, aiming to achieve Sichuan-style taste through the Zanthoxylum oil's effect. The results showed that the waxy rice flour dough with Zanthoxylum oil exhibited shear thinning properties, with viscosity decreasing from 292.59 Pa s to 91.16 Pa s at a shear rate of 1 s⁻1, making it an ideal material for 3D printing. The addition of Zanthoxylum oil significantly enhanced water activity and hydrogen bonds in the dough system. Furthermore, the incorporation of red Zanthoxylum oil accelerated the dough maturation process. 3D printing and TPA results revealed that sticky rice cakes containing 8% and 12% Zanthoxylum oil exhibited optimal printing accuracy, with the 8% sample achieving 96.69% fidelity. After steaming, the waxy rice cake with 8% Zanthoxylum oil retained a height of 18.23 mm and a diameter of 31.74 mm, with a soft, sticky texture. In summary, the product with the addition of 8% red Zanthoxylum oil exhibited superior appearance and texture, making it suitable for 3D printing. This study is expected to realize the customized production of Sichuan-style waxy rice cake.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Food Engineering
Journal of Food Engineering 工程技术-工程:化工
CiteScore
11.80
自引率
5.50%
发文量
275
审稿时长
24 days
期刊介绍: The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including: Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes. Accounts of food engineering achievements are of particular value.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信